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In my talk today:
m Review this work, Contact Model

m How can we extend it to infer model parameters
m — Looking for your feedback



Use short-range correlated nucleons to constrain
the NN interaction

m What are short-range correlated nucleons?

m What do we want to learn about the NN interaction?
m Repulsive core

m How do we connect the two?
m Generalized contact formalism (GCF)
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Short-range correlations are universal in nuclel.

m Pair with close-proximity
high relative momentum

m Universal in nuclei:
~ 20% of nucleons

m | ead to high-momentum tails

Log probability

\Wiringa et al., 10, AV18+UIX
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SRC pairs are predominantly neutron-proton.
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np-dominance arises from the tensor force.

Scalar part of the NN interaction

Potential \

Tensor interaction dominates

Distance



We can study SRCs by breaking them.
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Several previous EG2 analyses have identified
SRC pair break-up events.

m Or Hen (2012):
(e, e'pp)/(e, € p) confirms np-dominance in heavy nuclei

m Meytal Duer (2017):
Direct confirmation of np-dominance by detecting neutrons in ECal

m Erez Cohen (2018):
CM motion in pp pairs is Gaussian, o =~ 150 MeV/c

m |gor Korover (next talk!):
Detection of recoil neutrons in ToFs
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Several previous EG2 analyses have identified
SRC pair break-up events.

EG2 Experiment
m Data taking in 2004
m 5.016 GeV beam energy
m d, C, Al Fe, Pb targets

Liquid Hydrogen C, Al, Fe, or Pb
or Deuterium
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Several previous EG2 analyses have identified
SRC pair break-up events.

Proton-proton knock-out events in CLAS

EG2 Experiment
m Data taking in 2004
m 5.016 GeV beam energy
m d, C, Al, Fe, Pb targets

Counts (normalized to C)
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Similar distributions from C to Pb
show that FSls are suppressed.
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The NN interaction is poorly constrained
at short-distance.

m-production complicates the interpretation of phase-shifts at
high-momentum.

Scalar part of the NN interaction

Potential \

Distance
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Generalized Contact Formalism:

Use scale separation to calculate PWIA cross section

For pairs with high relative momenta:
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Contact Formalism Ingredients

do ~ gen - n(Bem) - Z CalPa(K)I?

a

® n(Pcnm): Pair CM distribution (3D Gaussian)
B @u(k): Schrodinger Eq. solution for NN-potential model
m C,

: Contacts, abundances of pairs in with quantum numbers o
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Contact Formalism Ingredients

do ~ aen - n(Bem) - Y CalBalk)?
o
® n(Pcnm): Pair CM distribution (3D Gaussian)
B @u(k): Schrodinger Eq. solution for NN-potential model
m C,: Contacts, abundances of pairs in with quantum numbers o

+ several other nuisance (and expt.) parameters.

Vary all parameters within sensible bounds to estimate systematics
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In order to compare to data:

m Generate MC Events &

N (Bv=B+3.\ph+m?)
(Bewm,ma-€a-2) L
’ (Brcatofpear )

(’5ch Exo= \/ng'}‘(mArZ’LE* ? )

(Pi€) .-

(6~mA)

23



In order to compare to data:

m Generate MC Events
m Other effects
m Radiation

(BN=Pi+G.pi+mi)
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In order to compare to data:

m Generate MC Events

m Other effects O O

m Radiation .6(3
m SCX T, O
O
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In order to compare to data:
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In order to compare to data:

m Generate MC Events
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m Radiation
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In order to compare to data:

m Generate MC Events
m Other effects

m Radiation
m SCX
m Transparency

m Acceptance using Fast MC

m Smear e~ and p momenta
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In order to compare to data:

Generate MC Events < F
Other effects :
m Radiation sof
m SCX 4of
m Transparency

Acceptance using Fast MC 10

1 11 12

Smear e~ and p momenta IR
[P/ fal

m SRC event selection
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In the following plots:

m Comparisons to carbon data: C(e, €'p) and C(e, €'pp) reactions
m Contacts (C,) extracted from ab initio calculations

m Three model NN interactions

m AV18: top-of-the-line phenomenological potential
m AV4', simplified, no tensor
m xEFT N2LO (1.0 fm cut-off)
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Missing momentum distribution
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Eriss-Prmiss COrrelations
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C(e, €'pp)/C(e, €p): tensor to scalar transition
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How can we extract parameters from the data?

Main parameters of interest: Other parameters:
m Contacts (pair abundances) m SCX, Transparency
m Pair CM gaussian width m CLAS resolution
m Residual excitation (E*) B P Cut-off
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How can we extract parameters from the data?

Main parameters of interest: Other parameters:
m Contacts (pair abundances) m SCX, Transparency
m Pair CM gaussian width m CLAS resolution
m Residual excitation (E*) B P Cut-off

This is an inference problem.
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Possible approaches

Compare several binned distributions
m Run generator for each param. value
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Possible approaches

Compare several binned distributions
m Run generator for each param. value
m Which distributions?
m Ignores full dimensionality
m Limited by statistics
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Possible approaches

Compare several binned distributions

m Run generator for each param. value
m Which distributions?

m Ignores full dimensionality

m Limited by statistics

Unbinned Likelihood

Li(pe' plead'prec)
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Possible approaches

Compare several binned distributions
m Run generator for each param. value
m Which distributions?
m Ignores full dimensionality
m Limited by statistics

Li(pe' plead'prec)

Unbinned Likelihood

m Likelihood each event
m Full dimensionality
m The generator is the wrong tool
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Unbinned Likelihood

log £ = Z log L;
i

(e. €'pp):
L.([—jmeas. [—)»meas. [—jmeas.) ~ / d°c . G3(Ap)5(AE)d3Ap
e ' lead » Prec. daﬁed3ﬁleadd9rec.
(e, €'p):
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L ) ~ [ GBI D00 e

These are very different integrals than d®o!
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Recipe

To evaluate a guess for Cs—g, Cs=1, Ocm, - . .
Evaluate normalization integral: [ d®cA(Pe, Biead)

For each event in data

m Evaluate likelihood integral, L;
m log L +=logl;
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Recipe

To evaluate a guess for Cs—g, Cs=1, Ocm, - . .

Evaluate normalization integral: [d8aA(5e, Plead)
For each event in data

m Evaluate likelihood integral, L;
m log L +=logl;

Current generator run: 500M samples
This method:

m Normalization: 1M samples
m Likelihood: 10k events x 10k samples = 100M total

We may even get a speed-up!
Each L; can be evaluated in parallel
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Complications | have glossed over. . .

m Detector acceptance
m — Weight integrals using maps (Fast MC)
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Complications | have glossed over. . .

m Detector acceptance
m — Weight integrals using maps (Fast MC)

m Electron radiation
m — Add integrals over EIPR, EFSR

m Single charge exchange
m — Sum all contributing channels:

B — 0pp = 0pp(1 — Pscx) + 0pnPscx + OnpPscx + - .-
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Method to exploring likelihood space
will depend on speed and dimensionality.

Some options:

m Metropolis-Hastings MCMC

m Explore entire space using random walk
m Good for complicated topologies
m Bad for high-dimensionality

m Maximum-Likelihood Estimation
m Find most-likely parameters (e.g. with gradient descent)
m Explore space around maximum, parameterize curvature
m Bad for complicated topologies
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Summary
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Summary

m Approved EG2 analysis shows
how SRC pairs can constrain
the NN interaction

(Bu= P+ it m})

m We can use the data to infer (Bowmaeas) (p“f?v"
GCF parameters. fffiﬁffff@ L ()

(6~WA)
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Summary

m Approved EG2 analysis shows
how SRC pairs can constrain | @0
the NN interaction

m We can use the data to infer
GCF parameters.

m | propose event-by-event
likelihood approach.

m Likelihood will require different
integrals.

52



