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Attractive Region:
Scalar nucleon – nucleon interaction

Repulsive Core:
Scalar (?) nucleon - nucleon
interaction

General behavior of nucleon – nucleon interaction 
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A pair with:

Large relative momentum ( k rel>kF )

Small C.M. momentum ( )

2N – Short Range Correlation (SRC)

kCM<kF
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High momentum 
tail is dominated by 
SRC pairs

np – Dominance:

~90% np pairs
~5% pp (nn) pairs

Independence from 
probing particle

Shneor et al., Phys.Rev.Lett. 99 (2007) 072501 

np - dominance

Subedi et al., Science 320 (2008)
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NN at large relative Momentum

Korover et al., PRL. 113, 022501  (2014)
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NN at large relative Momentum

Approved CLAS analysis (see Axel’s talk )A(e,e’pp)/A(e,e’p)

Korover et al., PRL. 113, 022501  (2014)
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Small SCX correctionA(e,e’pn)

Large SCX correctionA(e,e’pp)

Why to also study A(e,e’pn)/A(e,e’p)?
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A(e,e’np) done by Meytal Duer

Nature 560 (2018) no.7720, 617-621

Phys.Rev.Lett. 122 (2019) no.17, 172502 

Study np-SRC pairs
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This Analysis (e,e’pn)
Study np-SRC pairs

A(e,e’np) done by Meytal Duer

Nature 560 (2018) no.7720, 617-621

Phys.Rev.Lett. 122 (2019) no.17, 172502 

A(e,e’pn)/A(e,e’p) as function of 
missing momentum.
Allows better comparison to NN-
interaction calculations.
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Selection of hits in TOF counter

Use of SCRC Bos bank to store the information for all hits

Require modification to ClasTool

SCRC bos bank (or any intermediate banks) is not linked 
to the EVNT bos bank

For each event, add iterator over the intermediate banks* 
and store the data in the root file

*general modification also needed for Veto

(with help from Gagik Gavalian)
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Neutron hits identical to charged hits in plastic scintillators

We need detection plane before the scintillators: 
Drift Chambers

Pros.

● Blind to neutral particles

Cons.

● Unreconstructed track can 

be selected as a neutron

Separation between charged and neutral hits

Veto algorithm is needed
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Veto algorithm

Use drift chamber as a veto plane

HBLA bos bank

Standard bank for charged particles tracks (DCPB)

Not enough: Optimized to reduce false positive 

Find tracks even if the trajectory is not good
(less drift chamber planes that are required for DCPB) 
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Neutron Identification using only fully reconstructed tracks

Standard Tracking

5 neutral candidates identified
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Flow chart for extended veto algorithm

TOF counters

Projected track from region 3

Exclusion Region

All tracks
(full and partial)

Project to TOF 
from region 3

Exclude hits in TOF 
counters that fall in the 
projected region
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1 neutral candidate identified!

Including Partial Tracks
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Electrons
Protons

Neutral candidates using 
standard tracking only

Neutral candidates using 
extended algorithm

Difference between partial and full tracks

Number of Tracks: 
Partial - Full
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Exclusive d(e,e’pn) reaction:
Test neutron detection algorithm

d(e,e’p) selection

● Determine momentum resolution
● Establish the neutron detection efficiency
● Check the sensitivity to Veto algorithm 

1. Deuteron vertex

2. Knock out protons

3. Missing mass

Solid Target

Deuteron
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Exclusive d(e,e’pn) reaction:
Test neutron detection algorithm

d(e,e’p) selection

● Determine momentum resolution
● Establish the neutron detection efficiency
● Check the sensitivity to Veto algorithm 

1. Deuteron vertex

2. Knock out protons

3. Missing mass

Vertex Difference

Reduce random 
coincidence
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Exclusive d(e,e’pn) reaction:
Test neutron detection algorithm

d(e,e’p) selection

● Determine momentum resolution
● Establish the neutron detection efficiency
● Check the sensitivity to Veto algorithm 

1. Deuteron vertex

2. Knock out protons

3. Missing mass

All momentum is carried 
by knock-out proton
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Exclusive d(e,e’pn) reaction:
Test neutron detection algorithm

d(e,e’p) selection

● Determine momentum resolution
● Establish the neutron detection efficiency
● Check the sensitivity to Veto algorithm 

1. Deuteron vertex

2. Knock out protons

3. Missing mass

0.95 ± 0.06 GeV/c2
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Identification of neutron 
candidates as neutrons

Cuts:
● Vertex
● Vertex difference
● Missing Mass
● Leading Proton
● Missing Momentum
● Energy deposition

TOF

Opening angle

Corrected TOF

β – Calculated based 
on missing momentum

d(e,e’p)

γ
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Neutron Momentum Resolution

Δ p
p

≈8 %
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Comparing opening angle:
Measured vs Simulated

Validating the momentum resolution

Using d(e,e’p) Simulate back to back neutrons and 
smearing them with the momentum 
resolution
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Fiducial cuts for neutrons 

Paddles size from 
the database

E.S. Smith NIM A432, 265 (1999)

Removal of 10 cm from 
edge of each paddle Actual hits position with cut out of edges
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Neutron detection Efficiency  

Projection of missing momentum from d(e,e’p) reaction,

Limit based on angular resolution, keep 2σ from the boundary. 

η   =  
# d (e ,e ' pn)

# d (e ,e ' p)

Measured Neutrons
Expected Neutrons

Must hit inside the detector
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Number of d(e,e’p) events

Count number of events under 
the missing mass peak

Estimation of background
Empirical Fit



  28

Number of d(e,e’pn) events

Background for neutrons counting

Cuts:

Vertex

Vertex difference

Missing Mass

Leading Proton

Missing Momentum

Energy deposition

TOF

Corrected TOF
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Absolute neutron detection efficiency

Compared to previous analysis

η   =  
# d (e ,e ' pn)

# d (e ,e ' p)
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Efficiency sensitivity tests for different 
energy depositions (4 – 10 MeV)

Extraction of systematic uncertainty
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Selection of C(e,e’p) events

Selection of (e,e’p) events is identical to previous analysis

A(e,e’pp) and A(e,e’np)

XB > 1.2
Leading Proton:  0.96 > q/p > 0.62  and acos(pq) <25
Missing Mass < 1.1 
300 MeV/c < Missing Momentum < 1 GeV/c
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Selection of C(e,e’pn) events

Missing Momentum

Paddle Geometry

Time Window

X Bjorken

Leading Proton selection

Missing Mass
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Extracting the number of recoil neutrons

Background
Region

Signal
Region

Correcting each bin based on the 
neutron detection efficiency



  34

Sensitivity check of BG subtraction
10 000 realizations

Simulation run index

(e
,e

’p
n)

/(
e,

e’
p)
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Using the background subtraction and 
events selection for C(e,e’pn) and C(e,e’p)

C(e,e’pn)/C(e,e’p) for whole missing momentum range

*Data is corrected to the neutron detection efficiency
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This Work
AV18

N2LO (1.0 fm)
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Comparison between the GCF

Generator using the simple reaction mechanismSee Axel talk for details

Missing Mass Missing Energy
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Opening Angle

Missing momentum
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Summary

C(e,e’pn)/C(e,e’p) is complimentary to C(e,e’pp)/C(e,e’p)
with less sensitive to the SCX correction.

Missing momentum dependence is consistent 
with the prediction of GCF model.

Analysis report will be submitted in the following weeks
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