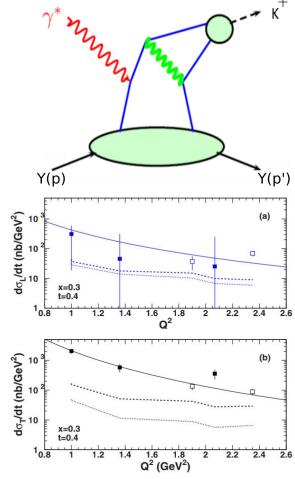
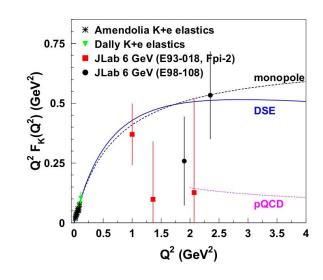
First look at KaonLT experiment data


Richard Trotta, Tanja Horn, Garth Huber, Pete Markowitz,
Stephen Kay, Vijay Kumar, Vladimir Berdnikov, Mireille Muhoza,
Nathan Heinrich,
and the KaonLT collaboration

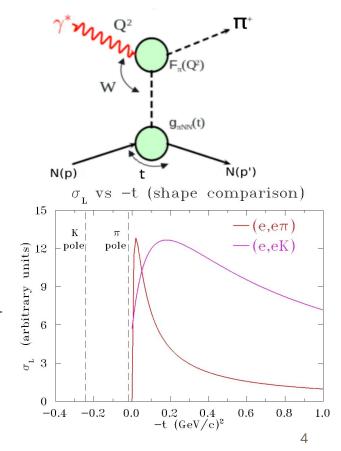
L/T separated data for verifying reaction mechanism


- Jlab 6 GeV data demonstrated the technique of measuring the Q² dependence of L/T separated cross sections at fixed x/t to test QCD Factorization
 - \circ Consistent with expected scaling of $\sigma_{\rm L}$ to leading order Q⁻⁶ but with relatively large uncertainties
- Separated cross sections over a large range in Q² are essential for:
 - Testing factorization and understanding dynamical effects in both Q² and –t kinematics
 - Interpreting non-perturbative contributions in experimentally accessible kinematics

M. Carmignotto et al., PhysRevC 97(2018)025204

Meson Form Factors

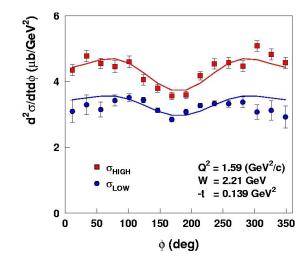
- Pion and kaon form factors are of special interest in hadron structure studies
 - Pion lightest QCD quark system and crucial in understanding dynamic generation of mass
 - Kaon next simplest system containing strangeness
- Clearest case for studying transition from non-perturbative to perturbative regions
- Jlab 6 GeV data showed FF differs from hard QCD calculation
 - Evaluated with asymptotic valence-quark Distribution Amplitude (DA), but large uncertainties
- 12 GeV FF extraction data require:
 - measurements over a range of t, which allow for interpretation of kaon pole contribution


M. Carmignotto et al., PhysRevC **97**(2018)025204 F. Gao et al., Phys. Rev. D 96 (2017) no. 3, 034024

Experimental Determination of the $\pi/K+$ Form Factor

- At larger Q², $F_{\pi^+}^{2}$ must be measured indirectly using the "pion cloud" of the proton via the p(e,e' π^+)n process
 - At small –t, the pion pole process dominates $\sigma_{\rm p}$
 - o In the Born term model, F_{n+}^{2} appears as

$$\frac{d\sigma_L}{dt} \propto \frac{-t}{(t-m_\pi^2)} g_{\pi NN}^2(t) Q^2 F_\pi^2(Q^2, t)$$


- Requirements:
 - \circ Full L/T separation of the cross section isolation of σ_{i}
 - Selection of the pion pole process
 - Extraction of the form factor using a model
 - Validation of the technique model dependent checks

L/T Separation Example

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

 σ_L will give us $F^2_{K_1}$

T. Horn et al., PhysRevC 97(2006)192001

- σ_L is isolated using the Rosenbluth separation technique
- Measure the cross section at two beam energies and fixed W, Q², -t
- Simultaneous fit using measured azimuthal angle (φ) allows for extracting L, T, LT, and TT
 - Careful evaluation of the systematic uncertainties is important due to the 1/ε amplification in the σ_L extraction
- Must have magnetic spectrometers for such precision cross section measurements
 - This is only possible in Hall C at JLab

L/T Separation Example

$$2\pi \frac{d^2\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

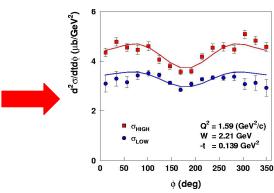
$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{LT}}{dt} \cos\phi$$

$$\frac{\cos\phi}{\cos\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{LT}}{dt} \cos\phi$$

$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{LT}}{dt} \cos\phi$$

$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi$$

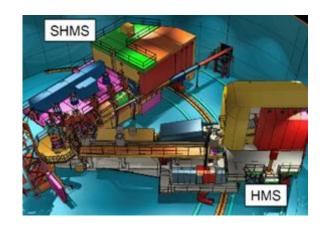
$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} \cos\phi$$

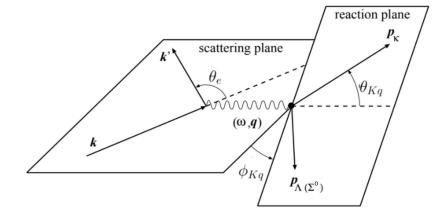

$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} \cos\phi$$

$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} \cos\phi$$

$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L}}{dt} \cos\phi$$

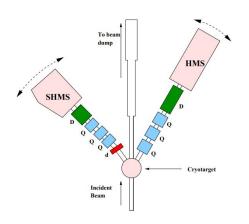
$$\frac{\cos\phi}{\sin\phi} = \varepsilon \frac{d\sigma_{L}}{dt} + \frac{d\sigma_{L$$


- Three SHMS angles for azimuthal (φ) coverage to determine the interference terms (LT, TT)
- Using the two beam energies (ε) to separate longitudinal (L) from transverse (T) cross section


Fit using measured ϵ and φ dependence

Review E12-09-011 (KaonLT) Goals

- Q² dependence will allow studying the scaling behavior of the separated cross sections
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV



- t-dependence allows for detailed studies of the reaction mechanism
 - Contributes to understanding of the non-pole contributions, which should reduce the model dependence
 - Bonus: if warranted by data, extract the kaon form factor

Kaon LT - Data Collected

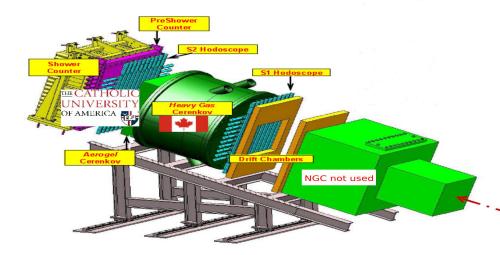
 The p(e, e'K⁺)Λ,Σ⁰ experiment ran in Hall C at Jefferson Lab over the fall and spring.

E	Q ²	W	х	$\varepsilon_{\rm high}^{}/\varepsilon_{\rm low}^{}$
(GeV)	(GeV ²)	(GeV)		
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	2.115	2.95	0.21	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

Experimental Details

Hall C: k_e=3.8, 4.9, 6.4, 8.5, 10.6 GeV

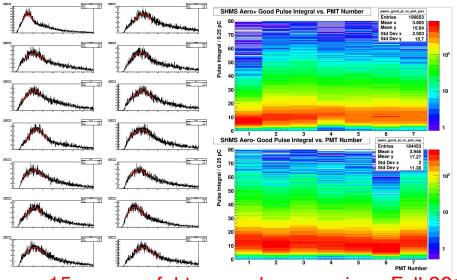
SHMS for kaon detection :

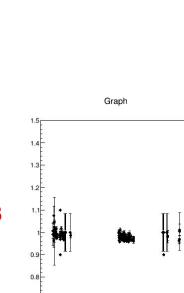

- o angles, 6 30 deg
- momenta, 2.7 6.8 GeV/c

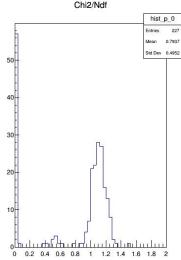
HMS for electron detection :

- angles,10.7 31.7 deg
- o momenta, 0.86 5.1 GeV/c

Particle identification:


- Dedicated Aerogel Cherenkov detector for kaon/proton separation
 - Four refractive indices to cover the dynamic range required by experiments
- Heavy gas Cherenkov detector for kaon/pion separation



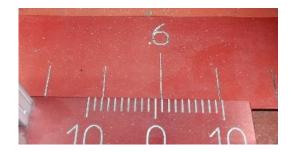

n	π _{thr} (GeV/c)	K _{thr} (GeV/c)	P _{thr} (GeV/c)
1.030	0.57	2.00	3.80
1.020	0.67	2.46	4.67
1.015	0.81	2.84	5.40
1.011	0.94	3.32	6.31

Aerogel Cherenkov detector in SHMS

~15 successful tray exchanges since Fall 2018

- Aerogel performance as expected
- Trays require some optimization before next use - prevent damage from crane operation

Analysis by V. Berdnikov


4500 5000 5500 6000 6500 7000 7500 8000 8500

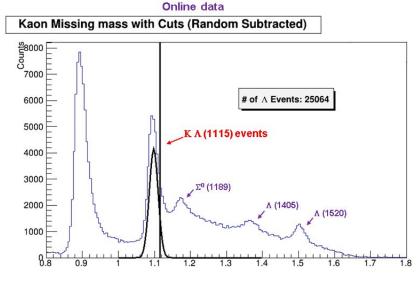
1(

SHMS small angle operation

- Some issues with opening and small angle settings at beginning of run
 - o SHMS at 6.01°
 - HMS at 12.7°

[12/17/18]

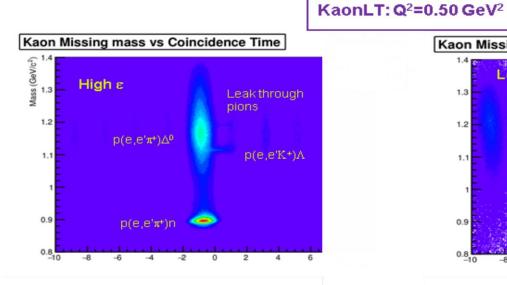
KaonLT Event Selection

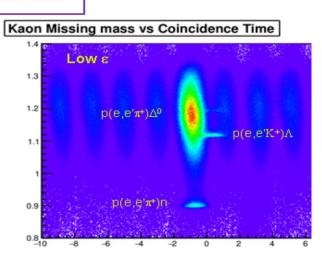

Isolate Exclusive Final States through missing mass

$$M_x = \sqrt{(E_{det} - E_{init})^2 - (p_{det} - p_{init})^2}$$

- Coincidence measurement between kaons in SHMS and electrons in HMS
 - simultaneous studies of KΛ and KΣ⁰ channels...and a few others...
- Kaon pole dominance tests through

$$\frac{\sigma_L(\gamma^* p \to K^+ \Sigma^0)}{\sigma_L(\gamma^* p \to K^+ \Lambda)}$$

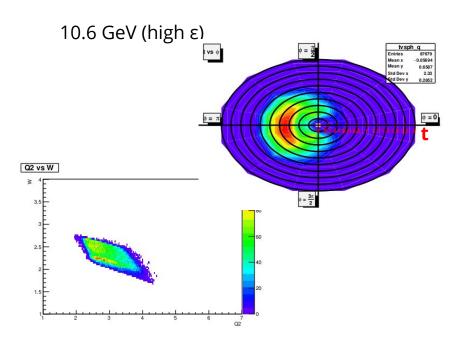

• Should be similar to ratio of coupling constants $g^2_{pK\Sigma}/g^2_{pK\Lambda}$ in t-channel

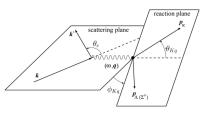


Plot by R. Ambrose, S. Kay, R. Trotta

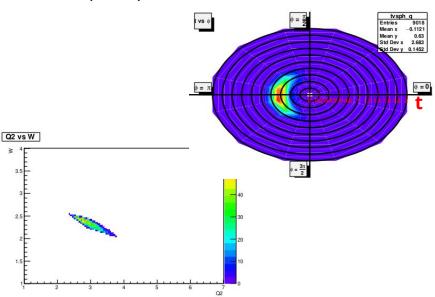
Interesting Physics in the other channels

• Large difference in L/T ratio between p(e.e' π)n and p(e,e' π) Δ 0 final states – G. Huber hclog #3640187

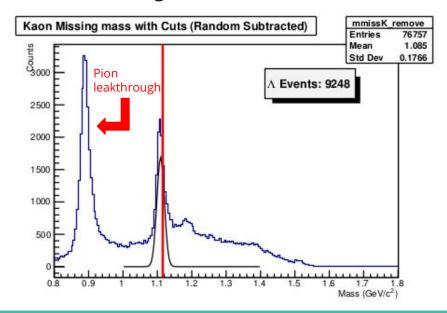


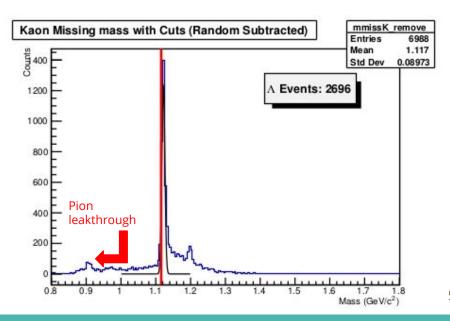

Plots by R. Ambrose, S. Kay, R. Trotta

- Large increase in neutron missing mass peak at high epsilon is evidence of the pion-pole process at low Q^2 and small –t, which suggests $\sigma_L >> \sigma_T$
- Δ^0 exclusive longitudinal cross section expected to be at best $\sigma_L \sim \sigma_T$


Comparison of high and low ε [Q²=3.0, W=2.32, x=0.40]

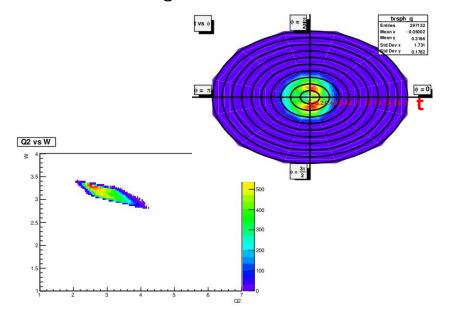
- [10.6 Gev (high ε), 6.2 Gev (low ε)]
- Left $(\theta_{high} = 21.18, \theta_{low} = 16.28)$

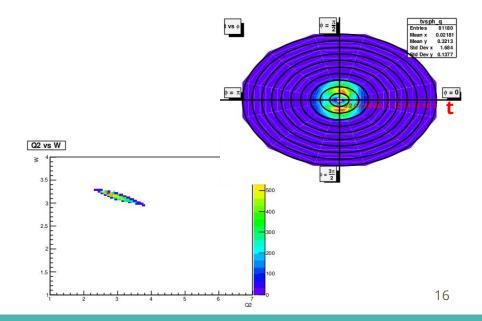

6.2 GeV (low ε)


Comparison of high and low ε [Q²=3.0, W=2.32, x=0.40]

- [10.6 Gev (high ε), 6.2 Gev (low ε)]
- Left $(\theta_{high} = 21.18, \theta_{low} = 16.28)$

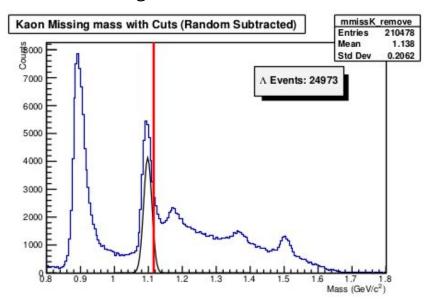
10.6 GeV (high ε)

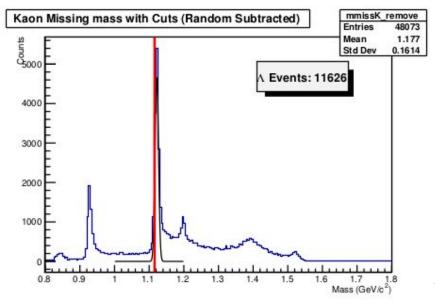

6.2 GeV (low ε)


Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε), 8.2 Gev (low ε)]
- Center (θ_{high} =9.42, θ_{low} =6.89)

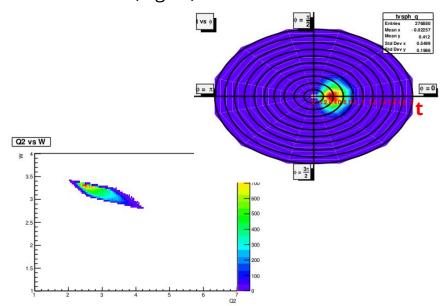
10.6 GeV (high ε)

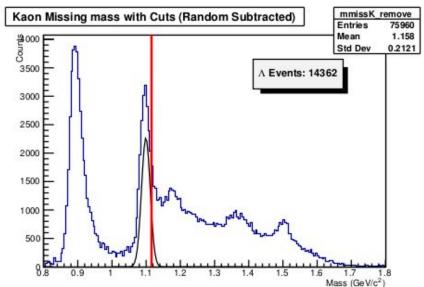

8.2 GeV (low ε)


Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε), 8.2 Gev (low ε)]
- Center (θ_{high} =9.42, θ_{low} =6.89)

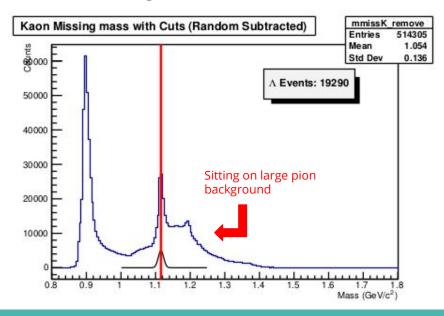
10.6 GeV (high ε)

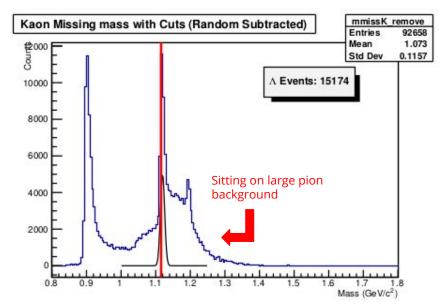

8.2 GeV (low ε)


Comparison of high and low ε [Q²=3.0, W=3.14, x=0.25]

- [10.6 Gev (high ε)]
- Right (θ_{high} =6.65)

10.6 GeV (high ε)

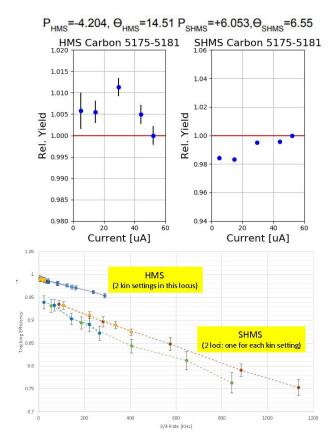



Comparison of high and low ε [Q²=0.5, W=2.40, x=0.09]

- [4.9 Gev (high ε), 3.8 Gev (low ε)]
- Center $(\theta_{high} = 8.86, \theta_{low} = 6.79)$

4.9 GeV (high ε)

3.8 GeV (low ε)


Analysis Phases

Current Phase

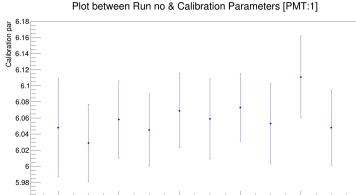
- 1. Calibrations
- Calorimeter, aerogel, HG cer, HMS cer, DC, Quartz plan of hodo
- Assure we are replaying to optimize our physics settings
- Efficiencies and offsets
 - Luminosity and elastics
- First iteration of cross section
 - Bring everything together
- 4. Fine tune
 - Fine tune values to minimize systematics
- 5. Repeat previous step
 - Repeat until acceptable cross sections are reached
- 6. Possible attempt at form factor extraction
 - Fit the data to a model and iterate

Phase 1: Early luminosity analysis (pre-calibrations)

- Understanding efficiencies from luminosity scans has been ongoing with only one run period having been looked at
- Relative yield has been reduced to ~2% spread for carbon target
- Tracking efficiencies are a big contributor
 - At a given ¾ rate, HMS tracking efficiency is
 ~4% higher than that of the SHMS
 - HMS tracking efficiency is mostly independent of kinematic setting – not the case for the SHMS
 - SHMS tracking efficiency extrapolates to ~95% at 0 KHz – hadron tracking efficiency low by 4-6%

21

Phase 1: Calibration of SHMS HGC detector and hodoscope time walking


Plot between Run no & Calibration

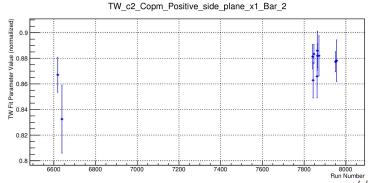
Heavy Gas Cherenkov

 Run dependence of calibration parameters for PMT1 to check the consistency of calibration.

Hodoscope timewalking

Plot from PMT 2+ on S1X plane, similar for others

8092


8094

8096

Run no

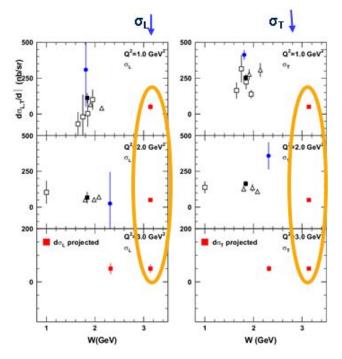
8088

8090

Analysis by V. Kumar, N. Heinrich and M. Muhoza

Conclusion

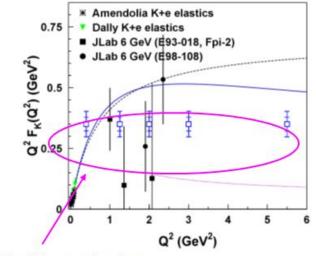
- Kaon can provide an interesting way to expand previous data of charged pion form factor with access to the mechanism involving strangeness
- E12-09-011 has completed its 2018-19 run
- Potential to extract the Kaon form factor from the L/T separated cross sections to the highest Q² achievable at Jlab
 - Full azimuthal coverage, good phase space matching and favorable rates to allow Kaon cross section separation
- Provide much needed data for Q² scaling at fixed x and -t in Kaon electroproduction to validate QCD factorization for hadron imaging studies
- Currently in the first phase of analysis


Extra Slides

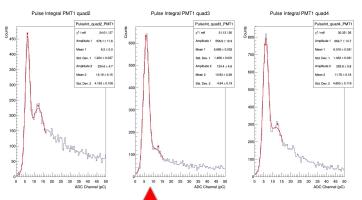
KaonLT Sample Projections

 E12-09-011: Separated L/T/LT/TT cross section over a wide range of Q² and t

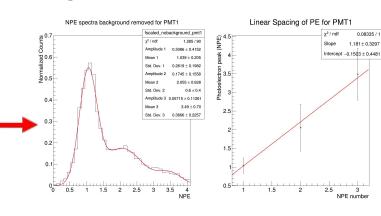
E12-09-011 spokespersons: T. Horn, G. Huber, P. Markowitz


- JLab 12 GeV Kaon Program features:
 - First cross section data for Q² scaling tests with kaons
 - Highest Q² for L/T separated kaon electroproduction cross section
 - First separated kaon cross section measurement above W=2.2 GeV

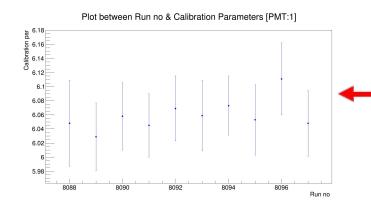
blue points from M. Carmignotto, PhD thesis (2017)


KaonLT: Projections for $F_{K+}(Q^2)$ Measurements

- E12-09-011: primary goal L/T separated kaon cross sections to investigate hard-soft factorization and non-pole contributions
- Possible K⁺ form factor extraction to highest possible Q² achievable at JLab
 - Extraction like in the pion case by studying the model dependence at small t
 - Comparative extractions of F_{π}^2 at small and larger t show only modest model dependence
 - larger t data lie at a similar distance from pole as kaon data

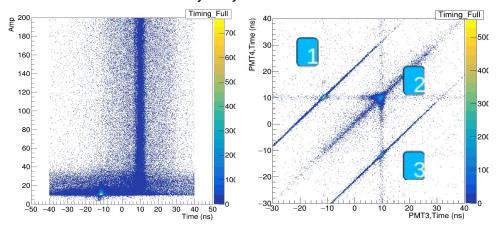


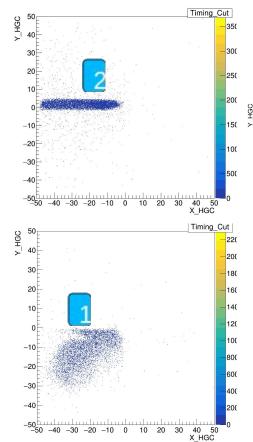
Possible extractions from 2018/19 run

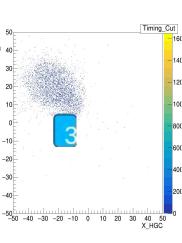

P1: Calibration of HGC Detector (SHMS)

To see the second & third photo-electron, we fitted the scaled histogram with Poisson function and subtracted the higher photoelectron.

Showing the SPE in HGC for PMT1 FADC and fit it with a Gaussian function to get the mean of peaks.

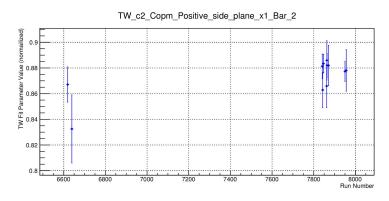

Run dependence of calibration parameters for the PMT1 to check the consistency of calibration.

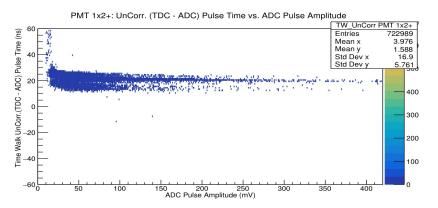

1.181 ± 0.3297

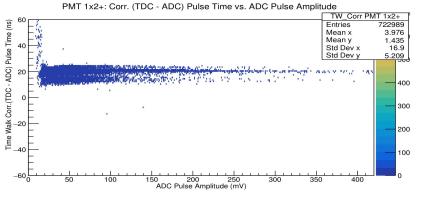

NPE number

HGC Timing Study

- In addition to main timing peak at +10ns, there is an unexpected second peak at -10ns.
- To better understand the origin of the unexpected peak, plot b/w Timing vs Amplitude.
 - o 2nd peak corresponds to small pulses only.
- We also checked the tracking position in focal plane coordinates.
 - Interesting correlation between hit position and timing remains a mystery.






P1: SHMS Hodoscope Time Walk Calibration

In order to correct for time walk we:

- Plot ADC amplitude against TDC ADC time
- Fit This Function: $f_{TW} = c_1 + \frac{1}{\left(\frac{a}{TDC_{Thrs.}}\right)^{c_2}}$
- Subtract second term
- Check parameter stability over run periods 6600 - 8000, stable within error
- Plots from PMT 2+ on 1x plane, similar for others

