Results from the Hall A GMp Experiment (E12-07-108)

Eric Christy

Hampton University / Jefferson Lab

on behalf of the GMp collaboration
2019 Hall A/C Summer Workshop June 28, 2019

Proton magnetic form factor

- Form factors encode electric and magnetic structure of the nucleon
\rightarrow Form factors characterize the spatial distribution of the electric charge and the magnetization current in the nucleon

$$
\mid \text { Form Factor }\left.\right|^{2}=\frac{\sigma(\text { Structured object })}{\sigma(\text { Point like object })}
$$

- In one photon exchange approximation the cross section in ep scattering when written in terms of G_{M}^{p} and G_{E}^{p} takes the following form:

$$
\frac{d \sigma}{d \Omega}=\sigma_{M o t t} \frac{\boldsymbol{\epsilon}\left(G_{E}^{p}\right)^{2}+\tau\left(G_{M}^{p}\right)^{2}}{\boldsymbol{\epsilon}(1+\tau)}, \quad \sigma_{M o t t}=\frac{\alpha^{2} \cos ^{2} \frac{\theta}{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}} \frac{E^{\prime}}{E}
$$

$$
\begin{gathered}
\mathcal{J}_{\text {proton }}=e \bar{N}\left(p^{\prime}\right)\left[\gamma^{\mu} F_{1}\left(Q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 M} F_{2}\left(Q^{2}\right)\right] N(p) \\
G_{E}=F_{1}-\tau F_{2} \quad G_{M}=F_{1}+F_{2}
\end{gathered}
$$

Where,

$$
\tau=\frac{Q^{2}}{4 M^{2}}, \quad \epsilon=\left[1+2(1+\tau) \tan ^{2}\left(\frac{\theta}{2}\right)\right]^{-1}
$$

Methods of measurements

- Rosenbluth separation method:
\rightarrow This method uses different beam energies and angle at fixed Q^{2}

$$
\sigma_{R}=\frac{d \sigma}{d \Omega} \frac{\varepsilon(1+\tau)}{\tau \sigma_{M o t t}}=\frac{\varepsilon}{\tau}\left(G_{E}^{p}\right)^{2}+\left(G_{M}^{p}\right)^{2}
$$

The slope of $\sigma_{R}(\varepsilon)$ is directly related to G_{E}^{p} and the intercept to

- Recoil polarization technique:

Polarized electron transfers longitudinal polarization to G_{E}^{p}, but transverse polarization to G_{M}^{p}

$$
\frac{G_{E}}{G_{M}}=-\frac{P_{t}}{P_{l}} \frac{E_{e}+E_{e^{\prime}}}{2 M} \tan \left(\frac{\theta_{e}}{2}\right)
$$

Polarization transfer cannot determine the values of G_{E} and G_{M} but can determine the from factor ratio.

Experimental Status of Proton Form Factors

\rightarrow Discrepancy in $\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}} \mathrm{P}-\mathrm{T}$ and Rosenbluth (ε) separations

JLab Hall C GEP-III PRC 96, 055203 (2017)

Resolving th Rosenbluth vs P-T discrepancy

Leading explanation is hard $2-\gamma$ exchange, not included In standard radiative corrections of Mo-Tsai, etc.

\rightarrow Expected to be relatively small for P-T method

$2-\gamma$ contributions from e+p / e-p ratios

Hard $2-\gamma$ contribution comes in with different signs for e+p and e-p =>

$$
\sigma+/ \sigma-=R_{2 \gamma} \sim 1-2 \delta_{2 \gamma}
$$

Conclusions from combined analysis of A. Afanasev, P. G. Blunden, D. Hasell, and B. A. Raue:
\rightarrow CLAS and VEPP-3 and OLYMPUS data exclude no TPE hypothesis at >95\% confidence level
\rightarrow Data of insufficient precision to distinguish calculations of $2-\gamma$ contributions
\rightarrow Renormalization of OLYMPUS results required at
New data from

- VEPP-3
- CLAS
- OLYMPUS
 twice the estimated uncertainty Eric Christy $^{\text {Con }}$

Hall A/C Summer 2019

Non-linearities in existing Rosenbluth data

\rightarrow Existing data indicate no significant non-linearities vs ε

Fit of elastic data to quadratic form

$$
\begin{aligned}
\sigma_{r}= & P_{0}+P_{1}(\varepsilon-0.5)+P_{2}(\varepsilon-0.5)^{2} \\
& <P_{2}>=0.019 \pm 0.027
\end{aligned}
$$

Super-Rosenbluth data also consistent with linear ε dependence of σ_{r}

Precision GMp is part of the 12 GeV Form Factor Program

\rightarrow Precision G_{M} required to study approach of QCD scaling in Dirac F_{1}

$$
F_{1}=\left(G_{E}+Q^{2} / 4 M_{N}^{2} \times G_{M}\right) /\left(1+Q^{2} / 4 M_{N}^{2}\right)
$$

$\rightarrow F_{2}$ provides constraint on $E(x, t)$ GPD at high- x, high-t via sum rules
\rightarrow Precision G_{M} up to $\mathrm{Q}^{2} \sim 12 \mathrm{GeV}^{2}$ complementary to 12 GeV polarization Transfer measurements of $\mathrm{G}_{\mathrm{E}} / \mathrm{G}_{\mathrm{M}}$ Hall A/C Summer 2019

GMp and other High Q^{2} data

- Less sensitivity to G_{E} in extracting G_{M}
- Lever arm in ε provides sensitivity to:
- 2γ from global fit utilizing G_{E} / G_{M} from polarization transfer

E12-07-108 Experiment Overview

- Precision measurement of the elastic ep cross-section over the wide range of the Q^{2} and extraction of proton magnetic form factor
- To improve the precision of cross section at high Q^{2} by a factor of 3
> To provide insight into scaling behavior of the form factors at high Q^{2}

GMp Uncertainties:
Statistical: Significant improvement over existing data for $\mathrm{Q}^{2}>6$ Systematic Goals:
Point to point: 0.8-1.1\%
Normalization: 1.3\%

Need a good control on:

- Beam charge
- Beam position
- Scattering angle
- target density, ...

Hall A/C Summer 2019

Experimental setup

Jefferson Lab at Newport News Virginia
High resolution spectrometers

Experimental Hall A

Jefferson Lab Hall A

HRS Parameters:
Acceptance: $-4.5 \%<\Delta \mathrm{p} / \mathrm{p}<4.5 \%, 6 \mathrm{msr}$
Resolution: $\delta p / p \leq 2 \times 10^{-4}$
$\Delta \mathrm{x}_{\mathrm{tar}}^{\prime}=0.5 \mathrm{mrad}$ (Horizontarl)
$\Delta y^{\prime}{ }_{\text {tar }}=1.0 \mathrm{mrad}$ (Vertical)

Spring 2015:

Data collected during GMp

$\mathrm{E}_{\text {beam }}(\mathrm{GeV})$	HRS	$\mathbf{P}_{\mathbf{0}}(\mathbf{G e V} / \mathrm{c})$	$\boldsymbol{O}_{\mathrm{HRS}}(\mathrm{deg})$	$\mathrm{Q}^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	Events(k)
2.06	R	1.15	48.7	1.65	157
2.06	L	1.22	45.0	1.51	386
2.06	L	1.44	35.0	1.1	396
2.06	L	1.67	$25.0 *$	0.66	405

Spring 2016:

* Surveyed angles

$\mathrm{E}_{\text {beam }}(\mathrm{GeV})$	HRS	$\mathrm{P}_{0}(\mathrm{GeV} / \mathrm{c})$	$\boldsymbol{\Theta}_{\mathrm{HRS}}(\mathrm{deg})$	$\mathrm{Q}^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	Events(k)
4.48	R	1.55	52.9	5.5	108
8.84	R	2.10	48.8^{*}	12.7	8
8.84	L	2.50	43.0^{*}	11.9	11
11.02	R	2.20	48.8^{*}	16.5	0.7

Fall 2016: *Most complete systematic studies during this period

$\mathrm{E}_{\text {beam }}(\mathrm{GeV})$	HRS	$\mathbf{P}_{0}(\mathbf{G e V} / \mathrm{c})$	$\boldsymbol{\Theta}_{\text {HRS }}(\mathrm{deg})$	$\mathrm{Q}^{2}(\mathrm{GeV} / \mathrm{c})^{2}$	Events(k)
2.22	R	1.23	48.8^{*}	1.86	356
2.22	L	1.37	42.0^{*}	1.57	2025
8.52	L	2.53	42.0^{*}	11.2	18.9
8.52	L	3.26	34.4	9.8	57.6
8.52	L	3.69	30.9^{*}	9.0	11.6
6.42	L	3.22	30.9^{*}	5.9	48.6
6.42	L	2.16	44.5^{*}	8.0	27.2
6.42	L	3.96	24.3	4.5	30.5
6.42	L	2.67	37.0	7.0	41.4
6.42	R	1.59	55.9^{*}	9.0	11.6
8.52	R	2.06	48.6^{*}	12.1	11
8.52	R	1.80	53.5^{*}	12.6	3.4
10.62	R	2.17	48.8^{*}	15.8	3.6

Extraction of Elastic ep Cross Section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}^{\text {data }}(\theta)=\int d E^{\prime} \frac{N^{\text {data }}\left(E^{\prime}, \theta\right)-N_{B G}\left(E^{\prime}, \theta\right)}{\mathcal{L}^{\text {data }} \cdot \epsilon \cdot L T} \cdot \frac{R C^{\text {data }}}{A^{\text {data }}\left(E^{\prime}, \theta\right)} \tag{1}
\end{equation*}
$$

$$
\frac{d \sigma}{}_{d \Omega}{ }^{\text {mod }}(\theta)=\int d E^{\prime} \frac{N^{M C}\left(E^{\prime}, \theta\right)}{\mathcal{L}^{M C}} \cdot \frac{R C^{M C}}{A^{M C}\left(E^{\prime}, \theta\right)}
$$

Radiative effects in Monte-Carlo based on improved Mo-Tsai from
R. Ent et. al Phys.Rev. C64 (2001) 054610

$$
\frac{d \sigma}{d \Omega}^{\text {data }}(\theta) / \frac{d \sigma}{d \Omega}^{\text {mod }}(\theta)=\frac{\int^{E_{\max }}\left(N^{\text {data }}\left(E^{\prime}, \theta\right)-N_{B G}\left(E^{\prime}, \theta\right)\right) d E^{\prime}}{\int^{E_{\max }} N^{M C} d E^{\prime}} \cdot \frac{A^{M C}\left(E^{\prime}, \theta\right)}{A^{\text {data }}\left(E^{\prime}, \theta\right)} \cdot \frac{R C^{\text {data }}}{R C^{M C}}
$$

Assuming acceptance and ratiative contributions are correctly modeled:

$$
\frac{d \sigma}{d \Omega}^{\text {data }}(\theta)=\frac{d \sigma}{d \Omega}^{\text {mod }}(\theta) \cdot \frac{Y^{\text {data }}}{Y^{M C}}
$$

\rightarrow Results were cross checked with acceptance correction method (eq 1) using Rad Cor based on code utilized for later SLAC experiments.

Eric Christy

Hall A/C Summer 2019

Detector efficiencies

-Cherenkov cut efficiency

Calorimeter cut efficiency

$$
\frac{\delta \epsilon}{\epsilon}<0.1 \%
$$

VDC Track Reconstruction Efficiency

> Standard Tracking for HRS VDCs utilizes single cluster only in each chamber
> GMp utilized additional Straw Chamber to perform precise checks on efficiency determination

> Elastic events were reconstructed with:

1. single cluster in both VDCs
2. single cluster in 1 VDC + SC

Longwu Ou (MIT)

Kinematic	K3-4	K3-6	K3-7	K3-8	K4-9	K4-10	K4-11
Corrected Yield ratio	1.0016	0.9994	0.999 3	0.9985	1.0007	1.0021	0.9997

Corrected yields agree to better than 0.2\%

Multiple clusters in bottom VDC

VDC 1 Cluster Efficiency vs. 'Track' \times

Significant Effort to Improve Optics Calibration

Longwu Ou (MIT)

- Angle and vertex calibration: used deep inelastic electrons from multi-foil carbon target

A 9-foil carbon target covers a total length of 20 cm along the beam direction

A 1-inch-thick tungsten sieve slit with high density holes at the spectrometer entrance selects scattered electrons in specific directions

- Algorithm: Minimization of χ^{2} by varying the optics coefficients

$$
\chi^{2}\left(y_{t g}\right)=\sum_{\text {events }}\left(Y_{i j k l} x_{f p}^{i} \theta_{f p}^{j} y_{f p}^{k} \phi_{f p}^{l}-y_{t g}^{\text {survey }}\right)^{2}
$$

- Momentum calibration: used elastic electrons from liquid hydrogen target

Example Data to Monte Carlo Comparison: LHRS

K3-7

Data to MC ratio: 1.0102
$\mathrm{P}_{0}: 2.6720 \mathrm{GeV} / \mathrm{c}$
Beam energy $=6.427 \mathrm{GeV}$
Scattering angle $=37.01 \mathrm{deg}$
$\mathrm{Q}^{2}=6.99(\mathrm{GeV} / \mathrm{c})^{2}$
Cross section $=2.89 \mathrm{e}-06 \mathrm{ub} / \mathrm{sr}$

- Excellent comparison after subtraction of target cell endcaps via dummy ($\sim 3 \%$)
- Small offsets in W consistent with estimated kinematic uncertainties

Error Budget (LHRS Fall 2016)

Source	$\mathrm{d} \sigma / \sigma(\%)(\mathrm{pt}-\mathrm{pt})$	$\mathrm{d} \sigma / \sigma(\%)$ (Norm.)
Beam charge $(\Delta I=0.06 \mu \mathrm{~A})$	$0.6($ at $10 \mu \mathrm{~A})-0.1($ at $65 \mu \mathrm{~A})$	0.1
Scattering angle $(\Delta \theta=0.2 \mathrm{mrad})$	$0.1-0.4$	$0.1-0.4$
Beam energy $\left(\Delta E=5 \times 10^{-4}\right)$	0.3	0.3
Boiling	$<0.35($ at $10 \mu \mathrm{~A})-0($ at $60 \mu \mathrm{~A})$	$0.35($ at $60 \mu \mathrm{~A})$
Optics	0.3	0.3
Track Reco	0.2	0.2
PID	0.1	0.1
Trigger	0.2	0.1
Target Length		0.1
Spectrometer acceptance	0.7	0.8
Radiative correction	0.8	1.0
Background subtraction	0.2	0.2
Cross section model	$1.2-1.3 \%$	0.1
Total		$1.4-1.6 \%$

GMp - E012-07-108 final cross sections

- Cross section relative to $1-\gamma$ cross section calculated with $\mathrm{G}_{\mathrm{E}}=\mathrm{G}_{\mathrm{M}} / \mu=\mathrm{G}_{\text {dip }}$
- Significant improvement in precision for $\mathrm{Q}^{2}>6$.
- Systematic uncertainties on Fall 2016 LHRS data $\sim 1.3 \%$ (pt-pt), 1.5\% (norm) RHRS (additional 2\% from optics)

Sample GMp Global Rosenbluth separations

Impact of E12-07-108 data on G_{E} / G_{M} at large Q^{2}

- Lab Hall A GMp12 data significantly reduce uncertainties on G_{E} / G_{M} at largest Q^{2} $=>$ further highlights discrepancy with P-T data up to $\mathrm{Q}^{2}>9$
- Full data set provides significantly more sensitivity than shown in select L/T separations

$2-\gamma$ form factors

P. A. M. Guichon and M. Vanderhaeghen, PRL 91, 142303 (2003).

$$
\begin{aligned}
& \sigma_{r}=\frac{G_{M}^{2}+2 G_{M} \mathfrak{R}\left(\delta \widetilde{G}_{M}\right)}{\text { Rosenbluth intercept }}+\frac{\epsilon}{\tau}\left[\frac{G_{E}^{2}+\frac{4 \tau^{2}}{M^{2}} \mathfrak{R}\left(\widetilde{F}_{3}\right)\left(G_{M}+\frac{1}{\tau} G_{E}\right)+2 G_{E} \mathfrak{R}\left(\widetilde{G}_{E}\right)}{\text { Rosenbluth Slope }}\right. \\
& \sigma_{r}=G_{M}^{2}+\frac{\epsilon}{\tau} G_{E}^{2}+2 G_{M} \mathfrak{R}\left(\delta \widetilde{G}_{M}\right)+\epsilon\left[\frac{2}{\tau} G_{E} \mathfrak{R}\left(\delta \widetilde{G}_{E}\right)+\frac{4 \tau}{M^{2}} \mathfrak{R}\left(\widetilde{F}_{3}\right)\left(G_{M}+\frac{1}{\tau} G_{E}\right)\right] \\
& r=\mu G_{E} / G_{M} \quad \text { Assuming } \quad 2 G_{E} \mathfrak{R}\left(\widetilde{G_{E}}\right) \text { is neglible } \\
& \sigma_{r} \approx G_{M}^{2}+2 G_{M} \mathfrak{R}\left(\delta \widetilde{G}_{M}\right)+\frac{\epsilon}{\tau}\left[\frac{r^{2}}{\mu^{2}} G_{M}^{2}+\frac{4 \tau^{2}}{M^{2}} \mathfrak{R}\left(\widetilde{F}_{3}\right) G_{M}\left(1+\frac{r}{\tau \mu}\right)\right] \\
& \rightarrow r \text { constrained by fit to P-T data } \\
& \rightarrow \text { global fit to cross section data provides access to } \\
& G_{M}^{2}\left(Q^{2}\right) \quad \mathfrak{R}\left(\delta \widetilde{G}_{M}\right)\left(Q^{2}\right) \text { And } \overline{\mathfrak{R}\left(\widetilde{F}_{3}\right)\left(Q^{2}\right)} \longleftarrow \varepsilon \text { average }
\end{aligned}
$$

GMp data provides enhanced access to Gmp 2- $\begin{aligned} & \text { Form Factors }\end{aligned}$

Eric Christy
Hall A/C Summer 2019

Summary

- 12 GeV era GMp experiment in Jefferson Lab Hall A measured e-p elastic cross sections for 21 kinematics with

$$
1<\mathrm{Q}^{2}<16.5 \mathrm{GeV}^{2}
$$

- Final Cross sections for Fall2016 data to be published soon with uncertainties of
1.2-2\% pt-pt
1.5\% normalization
- Data:
\rightarrow important for JLab 12 GeV Form Factor and GPD program
\rightarrow provides precision normalization for upcoming 12 GeV experiments at JLab
- ε coverage complementary to existing data and provides enhanced sensitivity to proton

$$
\mathrm{G}_{\mathrm{M}} \text { and } 2-\gamma \text { Form Factors }
$$

\rightarrow full power of data through global fits.

GMp (E12-07-108) Analysis Team

- Spokesperson:
- John Arrington
- Eric Christy
- Shalev Gilad
- Vincent Sulkosky
- Bogdan Wojtsekhowski
- Postdoc:
- Kalyan Allada
- Ph.D students (all have defended):
- Bashar Aljawrneh (NCA\&T)
- Thir Gautam (Hampton U.)
- Longwu Ou (MIT)
- Barak Schmookler (MIT)
- Yang Wang (William \& Mary)

Thanks to JLab accelerator team, Hall A target group, and all shift takers for their tremendous effort to make the GMp run successful

Thanks!

This work is supported by National Science foundation grant PHY-1508272

Measurement of Elastic Cross Section

- Cross section:

$$
\frac{d \sigma}{d \Omega}(\theta)=\int d E^{\prime} \frac{N_{\mathrm{det}}\left(E^{\prime}, \theta\right)-N_{\mathrm{BG}}\left(E^{\prime}, \theta\right)}{\mathcal{L} \cdot \epsilon_{\mathrm{eff}} \cdot \mathrm{LT}} \cdot A\left(E^{\prime}, \theta\right) \cdot \mathrm{RC}
$$

- Reduced cross section:

$$
\sigma_{\mathrm{red}}=\frac{d \sigma}{d \Omega} \frac{\epsilon(1+\tau)}{\sigma_{\mathrm{Mott}}}=\frac{4 E^{2} \sin ^{4} \frac{\theta}{2}}{\alpha^{2} \cos ^{2} \frac{\theta}{2}} \frac{E}{E^{\prime}} \epsilon(1+\tau) \frac{d \sigma}{d \Omega}
$$

- Parameters:
- $\mathrm{N}_{\text {det }}$: number of scattered elastic electrons detected
- N_{BG} : events from background processes
- ${ }_{\epsilon}^{\mathcal{L}}$: Integrated luminosity
- : Corrections for efficiencies
- LT: live time correction
- A(E', $\theta)$: spectrometer acceptance
- RC: radiative correction factor
- E: beam energy
- θ : Scattering angle

A thorough understanding of all these parameters is crucial for a precision cross section measurement

