# Event generator for exclusive reactions at high and low virtuality with adaptations for Hall C

- 1) Reactions and specific options
- 2) Framework
- 3) Running the generator independently and with simc
- 4) Examples

Marie Boër Temple University Hall C collaboration meeting, June 29, 2019

## Reactions

### High virtuality exclusive reactions ( $Q^2 > 1 \text{ GeV}^2$ )

 $\rightarrow$  Generalized Parton Distributions physics

Deeply Virtual Compton Scattering (DVCS):  $e P \rightarrow e' P' \gamma$  (high Q<sup>2</sup>) Timelike Compton Scattering (TCS) =  $\gamma P \rightarrow e^+e^- P'$ 

Double Deeply Virtual Compton Scattering (DDVCS): e P  $\rightarrow$  e' P'  $\mu^+\mu^-$ 

### Low virtuality exclusive reactions ( $Q^2 < 1 \text{ GeV}^2$ )

→ Proton polarizabilities, meson Form Factors Virtual Compton Scattering (VCS):  $e P \rightarrow e' P' \gamma$  (low Q<sup>2</sup>) Exclusive electro-production of  $\pi^{\circ}$ :  $e P \rightarrow e' P' \pi^{\circ}$ Exclusive electro-production of  $\pi^{+}$ :  $e P \rightarrow e' N' \pi^{+}$ 

### **Standard reactions**

→ PDF, Form Factors, and basis for experimental studies Deep Inelastic Scattering (DIS):  $e P \rightarrow e' X$ Elastic Scattering:  $e P \rightarrow e' P'$ 

## Hard exclusive Compton-like reactions

### γ(\*) Ν → Ν' γ(\*)

access Generalized Parton Distributions, parametrization of generator based on VGG model

**Interference with Bethe-Heitler** 

### **Compton part**



### **Generator modules:**

DVCS: polarized electron beam, polarized P or N target (L or  $\perp$ )

TCS: circularly or linearly polarized photon beam, polarized P or N target (L or  $\perp$ ). y or e<sup>-</sup> beam DDVCS: polarized electron beam, unpolarized P or N target

Hard exclusive meson production: unweighted only in current version (need model)

 $\rightarrow$  use of LO and leading twist amplitudes, GPD H only in current version (previously also H)

## Low virtuality exclusive reactions

 $y^* P \rightarrow P' y \text{ or } M$ 

access form factors and polarizabilities, paramerization in generator based on MAID model



Exclusive  $\pi^{\circ}$  or  $\pi^{+}$  production:



### **Generator modules:**

 VCS: unpolarized off P, VCS+BH decomposed into 5 sub-processes (B. Pasquini MAID 2007)
 π°: unpolarized off P (MAID 2003)
 π+: unpolarized off P (MAID 2003)

# **Specific options**

### • Generation of weighted events:

- standard, generated flat within a set of variables: counting rates and unpolarized cross sections

### • $4\pi$ generation of events as a function of kinematic invariants:

- phase-space studies and scans
- can be used with extensions for any fix target or collider experiment, narrow or  $4\pi$  acceptance

### • Beam and target spin, events weighted according to polarization

- $\rightarrow$  for high virtuality reactions only
- prediction of realistic single and double spin asymmetries, fits of polarized cross sections
- target: L or  $\perp$ , electron beam: linear, photon beam: circular or linear

### Sub-processes simultaneous event weighting

- → for Compton-like processes studies, generally dominated by Bethe-Heitler
- interpretation of data, F.O.M.
- BH as less model dependent for counting rates estimation in some reactions
- phase-space scan to avoid specific regions

### • Electron or photon beam

- $\rightarrow$  for Timelike Compton Scattering
- realistic prediction in case of quasi-real photons with angle and virtuality corrections

### Radiative corrections

- external and real corrections: all reactions, virtual corrections: not yet
- adjustable target lenght and material

## Framework



# **User input file**

| Variable name          | usage              | limits (grid)               | default value               | other recom-             |  |
|------------------------|--------------------|-----------------------------|-----------------------------|--------------------------|--|
|                        |                    |                             |                             | mandations               |  |
| Number of              | limit size of out- | 10000                       |                             | limit to 50000 for       |  |
| events to gener-       | put file           |                             |                             | memory                   |  |
| ate                    | -                  |                             |                             | -                        |  |
| Beam type              | real photon (0)    | 0 or 1                      | 0 or 1                      |                          |  |
|                        | initial electron   |                             |                             |                          |  |
|                        | (1)                |                             |                             |                          |  |
| Photon energy          | cross section      | [5, 11.5] GeV               | 11                          | less than elec-          |  |
| range                  |                    |                             |                             | tron if quasi-real       |  |
| Beam energy (if        | for photon flux    | $[\sim 5, 11.5]$ GeV        | 11                          | $> max(E_{\gamma})$      |  |
| electron beam)         |                    |                             |                             |                          |  |
| $\theta_{\gamma}(max)$ | bremsstrahlung     | -                           | 0                           | photon cone for          |  |
|                        | angle max          |                             |                             | bremsstrahlung           |  |
|                        |                    |                             |                             | flux                     |  |
| lepton type            | electron (1)       | 1 or 2                      | 1                           | kinematic only,          |  |
|                        | muon (2)           |                             |                             | no muons in              |  |
|                        |                    |                             |                             | cross sections           |  |
| Target lenght          | bremsstrahlung     | -                           | 15 cm                       | only electron            |  |
|                        |                    |                             |                             | mode                     |  |
| Target composi-        | bremsstrahlung     | material                    | (1,1) or 1001               | only electron            |  |
| tion (A,Z)             | and EPA            |                             |                             | mode                     |  |
| Target = $p(1)$ or     | cross section      | 1, 2                        | 1                           |                          |  |
| n (2)                  |                    |                             |                             |                          |  |
| Beam polariza-         | pol. cross sec-    | [0, 1]                      | 0.8                         | electron po-             |  |
| tion dilution          | tions              |                             |                             | larization or            |  |
| factor                 |                    |                             |                             | linearly pol.            |  |
|                        |                    |                             |                             | photon                   |  |
| Beam pol. vector       | polarized cross    | 0 (circular) 1 (x-          | 0                           | set 0 if unpolar-        |  |
| direction              | sections           | axis) 2 (y-axis) or         |                             | ized                     |  |
|                        |                    | 3 (45°)                     |                             |                          |  |
| Target polariza-       | polarized cross    | 0 (unpolarized),            | 3                           | set 0 if unpolar-        |  |
| tion direction         | sections           | 1 (x-axis), 2 (y-           |                             | ized                     |  |
|                        |                    | axis), 3 (z-axis)           |                             |                          |  |
| Target dilution        | polarized cross    | 0 to 1                      | 0.7                         |                          |  |
| factor                 | section            |                             |                             |                          |  |
| -t                     | Mandelstam         | cross section               | [.04, 2.04]                 |                          |  |
|                        | variable           |                             |                             |                          |  |
| $Q'^2$                 | outgoing photon    | cross section               | [.09, 9.2] GeV <sup>2</sup> |                          |  |
|                        | virtuality         |                             |                             |                          |  |
| $\theta_{CM}$          | azimuthal angle    | $[30^{\circ}, 150^{\circ}]$ | $[30^{\circ}, 130^{\circ}]$ |                          |  |
|                        | of decay leptons   |                             |                             |                          |  |
| $Q^2_{max}$            | quasi-real pho-    | 0 to 0.3                    | 0.3                         | low Q <sup>2</sup> domi- |  |
|                        | tons max.          |                             |                             | nate                     |  |
| Output                 | (0) ROOT, (2)      | 0, 1, 2                     | 0                           | recommend only           |  |
|                        | HEP. (1) both      |                             |                             | ROOT                     |  |

**Example**: TCS input file (past version, more options in v5)

### beam and photon flux options

### choice of final state

target choice radiative corrections options here

polarization options

### kinematic limits

# output format acceptance limits can be set here

7

Table 2: User's input file parameters for TCS-type events generation. All units are GeV.

# **Output files**

### **ROOT file:**

note: content depends on the reaction

SIM\_Tree: (all events)

1) 4-vectors array for all incoming and outgoing particles (E, px, py, z)

- 2) Kinematics (Q<sup>2</sup>...)
- 3) Spin direction,  $\varepsilon$ , dilution factors
- 4) total and subprocesses weights, asymmetries
- 5) Normalization: flux, number of events

Dump\_Tree: (one entry)

1) input file options

2) normalization informations

### **HEP file:**

standard HEP file + associated text file to print various weights and options

### **TEXT file:**

to be used with simc modified version HMS particle (-y, x, z, E), SHMS particle (-y, x, z, E), weights and event information

### LOG file:

to be used with simc modified version

1) total and saved number of events, phase-space, run index

2) options

3) input file

# Generating data and plugging to simc

1) Copy full directory: /work/halla/solid/mboer/public/Generator\_publicversion/version5.0

2) Set environment from the new directory set.csh && source /apps/root/6.10.02/setroot\_CUE.csh

### 3) Modify user's input file

**4)** Run: ./DEEPGen (reaction) (run index) (seed in batch mode)

### **Reaction list:**

| <ol> <li>tcs (weighted)</li> <li>ddvcs</li> <li>dvcs</li> </ol> | <ol> <li>ps_eephoto_fix (phase-space)</li> <li>ps_eeel_fix</li> <li>ps_vcs_fix</li> </ol> |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 4. vcs<br>5. pi 0<br>7. pi+                                     | 15. ps_pi0_fix<br>17. ps_pin_fix                                                          |
| 30. dis<br>31. elastic<br>32. elastic_lab                       |                                                                                           |

5) SIMC: download version with doc. (Sylvester's page): https://gitlab.com/jpsi007/simc-file-input

5) Recompile simc with modified libraries on: /work/halla/solid/mboer/public/mod\_simc

### 6) Running generated events with this version of simc:

- needs name of log file after the name of data file in command line

- simc input file: switch off beam radiations and request external data input file

# Modified simc output file

Additions to sime output root file, name of new entries for each reaction in ROOT tree:

|        | VCS                                         | π°                   | π+             | TCS                   | DDVCS                   | DVCS                   | elastic          |  |  |
|--------|---------------------------------------------|----------------------|----------------|-----------------------|-------------------------|------------------------|------------------|--|--|
| Weight | σ <sup>tot</sup>                            | $\sigma^{tot}$       | $\sigma^{tot}$ | $\sigma^{\text{BH}}$  | $\sigma^{\text{BH}}$    | σ <sup>bh</sup>        | σ <sup>tot</sup> |  |  |
| Wgt2   | $\sigma^{\text{BH}}$                        | $\phi_{_{CM}}$       | -              | $\sigma^{\text{TCS}}$ | $\sigma^{\text{ddvcs}}$ | $\sigma^{\text{dvcs}}$ | -                |  |  |
| Wgt3   | $\sigma^{VCSborn}$                          | $\theta_{_{CM}}$     | -              | $\sigma^{tot}$        | $\sigma^{tot}$          | σ <sup>tot</sup>       | -                |  |  |
| vara   | $\sigma^{\text{tot born}}$                  | -y (γ <sub>1</sub> ) | -y (N')        | BSA                   | -y (P')                 | BSA                    | -                |  |  |
| varb   | $\sigma^{vcs NB}$                           | Χ (Υ <sub>1</sub> )  | x (N')         | TSA                   | x (P')                  | TSA                    | -                |  |  |
| varc   | L/R asym                                    | z (γ <sub>1</sub> )  | z (N')         | BTSA                  | z (P')                  | BTSA                   | Q <sup>2</sup>   |  |  |
| vard   | y*flux corr.                                | y*flux corr          | y*flux corr    | y flux                | BSA                     | y*flux corr            | y*flux corr.     |  |  |
| vare   | Ebeam                                       | Ebeam                | Ebeam          | Ebeam                 | Ebeam                   | Ebeam                  | Ebeam            |  |  |
| loga   | run index                                   |                      |                |                       |                         |                        |                  |  |  |
| logb   | total number of events generated "T (file)" |                      |                |                       |                         |                        |                  |  |  |
| logc   | generation total phase-space "PS"           |                      |                |                       |                         |                        |                  |  |  |

### Normalization:

weights = differential cross sections in invariants Q<sup>2</sup>, Q<sup>2</sup>, xb, t,  $\phi$ ,  $\theta$ , E( $\gamma$ )... (see note)

 $\sigma(\text{bin})$  and N(bin)= $\sigma(\text{bin})$ \*L such as:  $\sigma^{bin} = \frac{\sum_{i}^{N}}{\sum_{i}}$ 

$$\frac{W_i * PS}{\int_j^{\text{files}}(T)}$$

10

## **Examples: asymmetries out of generator (from note January)**

### DVCS: BSA, TSA (L), BTSA (L)



Figure 14: DVCS+BH generated spin asymmetries from a polarized electron beam (top left panel), longitudinally polarized target (top right panel), polarized beam+longitudinally polarized target (bottom panel). The beam energy is set at 11 GeV and  $0.2 < x_{bj} < 0.25$ ,  $4 < Q^2 < 5$  GeV<sup>2</sup>, -0.6 < t < -0.5 GeV<sup>2</sup>. Asymmetries are displayed as a function of  $\phi_{LH}$  (rad.).

2-dim distributions: asymmetries vs "physics"  $\phi$  just an example, use polarized  $\sigma$  for predictions

#### **TCS: BSA**



Figure 16: TCS+BH beam spin asymmetry as a function of  $\phi$ , for 5<E<sub> $\gamma$ </sub><11.4 GeV, 6.5 <  $Q'^2$  < 7 GeV<sup>2</sup> and 0.6<-t<0.7 GeV<sup>2</sup>.

### **DDVCS: BSA**



Figure 18: DDVCS+BH beam spin asymmetry as a function of  $\phi_{CM}$  and  $\phi_{LH}$  (units are radians).

## **Examples of applications: TCS projections with various options**

• asymmetries: beam &  $\perp$  target, version 4, 2018 (E12-18-005)



⇒ advantage:

asymmetries are integrated over bin width,

this is not a "theory" projection

• for BH measurement in Hall D, Compton contribution to systematic uncertainties, version 4, 2018



 $\Rightarrow$  advantage: phase-space scan and F.O.M. to identify fast regions to enhance various contributions

N.B.: I added this slide because Julie "requested" twice that I show something on TCS

## Summary

- Event generator for physics studies and JLab simulations
- hard exclusive processes
- low virtuality processes
- standard reactions
- Adaptations to run with simc and other software

### • Documentation and binaries:

- Note on version 4 (January 2019): in Hall C data base, index #1000 https://hallcweb.jlab.org/doc-public/ShowDocument?docid=1000

- Wiki page:

https://hallaweb.jlab.org/wiki/index.php/DEEPGen\_event\_generator (2018)

- New version binaries: /work/halla/solid/mboer/public/Generator\_publicversion/version5.0 (few options disabled until complete check performed)

- questions: mboer@jlab.org

Updated full documentation and code coming soon