



# Update: Results on $\sigma_L/\sigma_T$

By: Sheren Alsalmí (but presented by Thía Keppel)

### Inclusive $e + p \rightarrow e + X$ Scattering



Alternatively:

$$\left(\frac{d^2\sigma}{dE'd\Omega}\right) = \Gamma(\sigma_T + \epsilon\sigma_L) \tag{2}$$

where:

- $\Gamma$ : Flux of transversely polarized virtual photons
- $\epsilon$ : relative longitudinal polarization

$$F_L = \left(1 + \frac{Q^2}{\nu^2}\right)F_2 - 2xF_1$$
  $R = \frac{\sigma_L}{\sigma_T} = \frac{F_L}{2xF_1}$ 



### Inclusive $e + p \rightarrow e + X$ Scattering

### Single photon exchange:



### 6 GeV Era Program of Inclusive Structure Function Measurements in Hall C (High Precision Cross Sections and L/T Separations)

| Experiment   | target(s) | Wrange | Q <sup>2</sup> range |
|--------------|-----------|--------|----------------------|
| E94-110      | р         | RR     | 0.3 - 4.5            |
| E99-118      | p, d      | DIS+RR | 0.1 - 1.7            |
| E00-002      | p, d      | DIS+RR | 0.25 - 1.5           |
| E02-109      | d         | RR+QE  | 0.2 - 2.5            |
| E06-009      | d         | RR+QE  | 2.0 - 4.0            |
| E04-001 - I  | C, Al, Fe | RR+QE  | 0.2 - 2.5            |
| E04-001 - II | C, Al, Fe | RR+QE  | 2.0 - 4.0            |



### **Nuclear Dependence of R : Previous Studies**

SLAC

NMC

5



### $\Delta R$ consistent with zero

Similar results from HERMES But... in all, large uncertainties and measured where R is small

### **Nuclear Dependence of R : Previous Studies**





# **Nuclear Dependence of R : So far ...**

- Several experiments found that  $\Delta R$  to be consistent

with zero at high Q<sup>2</sup> and with large uncertainty

- Only hints of nuclear dependence of R, (Deuterium, low Q<sup>2</sup>)
- No available data to confirm that  $\Delta R \neq 0$  for nuclear

targets (low and moderate Q<sup>2</sup>)

E04-001 (Hall C – Jefferson Lab)



#### **Cross Section Results**



## **Point-to-Point Uncertainties**

| Quantity                    | Uncertainty                    |
|-----------------------------|--------------------------------|
| Beam Energy $E$             | $4 \times 10^{-4} \text{ GeV}$ |
| Scattering Energy $E'$      | $4 \times 10^{-4} \text{ GeV}$ |
| Scattering Angle $\theta$   | $0.35 \mathrm{\ mrad}$         |
| Beam Charge                 | $0.23 \ \mu A$                 |
| Trigger Efficiency          | 0.46~%                         |
| Calorimeter Efficiency      | 0.1%                           |
| Cerenkov Efficiency         | 0.04~%                         |
| Computer Deadtime           | 0.2 %                          |
| Electronic Deadtime         | 20% $05%, <.1%$                |
| Charge Symmetric Background | 0.05 - 2 %                     |
| Optics                      | 0 - 1%                         |
| Acceptance                  | 0.6~%                          |
| Radiative Corrections       | 1 %                            |

#### TOTAL

1.6% typical

The Point-point Systematic Uncertainties in the Differential Cross Section

# **Rosenbluth Separation**



**Over 500 individual L/T Separations – no repeated cross sections** 

10







- Data differ from the fit with assumption  $R_A = R_D = R_p$  (nuclear dependence)
- Q<sup>2</sup> dependent effect
- Decreases with Q<sup>2</sup> (expected)

13





# **Conclusions and to do's**

- The Inclusive electron-nucleon cross sections for both Carbon and Iron were extracted in the nucleon resonance region with high precision (stat + sys better than 2%).
- <sup>ℕ</sup> The Rosenbluth separation was performed on both Carbon and Iron cross sections to extract the structure functions  $F_L$ ,  $F_1$ ,  $F_2$  and the Ratio *R* (more than 500 L/T's in total).
- ▲ Our results confirm that  $\Delta R \neq 0$  ⇒There is a nuclear dependence on <u>R</u> and F<sub>L</sub>

# **Conclusions** and to do's

- Nost Sheren here this summer
- Ratios to deuterium
- **Extract** F<sub>L</sub> separately
- Assess impact on EMC effect measurements
- ▲ Incorporate into models
- Obtain more data!>>>>

#### **Continue into 12 GeV Era:**

# Hall C Experiment E12-14-002 (S. Malace, E. Christy, D. Gaskell, CK, P. Solvignon, H. Szumilla-Vance

