Deep Virtual Compton scattering Hall C proposal for Hall A jeopardy experiment E12-06-114

CHARLES HYDE (CONTACT) A. CAMSONNE, C. MUÑOZ CAMACHO, J. ROCHE, CO-SPOKESPERSONS

Hall A DVCS Impact

- Q²-dependent cross sections are primary proof of factorization and quantifier of higher-twist effects
- ► Energy Dependence at fixed Q², x_B, t → Generalized Rosenbluth separation of |DVCS |² and Re[DVCS[†]BH]
- $\sigma_T \gg \sigma_L$ for Deep Virtual π^0 production
 - ► Chiral Sym. Break. ⊗ Transversity GPDs
- 7 publications, 1 submitted, 1 in preparation (12 GeV,"DVCS3")

Hall A E12-06-114 Approved

▶ 100 PAC days

► 70 days high priority

- Goals
 - High precision (4% systematic) cross sections
 - ► Factor of two Q² range

▶ x_B = 0.36, 0.48, 0.60

2014-2016 Hall A Run

 Ω^2 (GeV²) 10 ▶ 50 PAC days ▶ 1 setting @ 11 GeV • Reduced statistics @ $x_B = 0.48$ 6 Reduced momentum of HRS Kinematics shifted Two settings omitted 0.2 0.5 0.8 0.9 0.1 0.3 0.6 0.7 0.4

4

27 June 2019

Hall A DVCS run 2014-2016

The Hall A/C DVCS Program

- Hall C / NPS adds reach
 - ▶ Low x, hi-Q²,
 - Variable energy at fixed (x,Q², t)
 - New Calorimeter
 - ▶ PbWO₄ : Higher resolution
 - ► To be mounted on SHMS carriage
 - Sweep magnet
 - Replaces SHMS Horizontal Bender
 - Enables smaller angles, higher luminosity
 - Ready by FY2021

Jeopardy Proposal (50 days/20 days High Impact)

- Two Options
- Complete the program for Hall A ($x_B = 0.6$)
 - Construction Ready to run with 6 months advance notice, 1 month setup in Hall A
 - Scalorimeter has suffered multiple radiation/curing cycles
 - Scalo PMTs past expected lifetime (very rough calculation)
 - ► ⊗ No obvious scheduling opportunity
- Add 30 days to Hall C / NPS
 - Emphasis on extending the Q² range of multi-energy running. Generalized Rosenbluth separations of Re[DVCS[†]BH] from |DVCS|²

Hall C Jeopardy option/proposal

Add energyscan to three (x_B, Q², t) settings

Hall C Jeopardy Projections

Fig. 7: Estimated cross sections and statistical uncertainties for settings Kin48_J1 and Kin60_J1–J3 (left to right). For each setting, only one *t*-value is shown. Each cross section is averaged over the HMS acceptance and a bin of $\Delta t = 0.05 \text{ GeV}^2$. For Kin60_J3, the *t*-bin width is 0.10 GeV². The cross sections are obtained from the KM15 model [13], and the dashed lines are the pure Bethe-Heitler cross sections.

C. Hyde: DVCS Jeopardy

27 June 2019

High Impact Request

- Essential to calibrate different the GPD to DVCS formalisms
- Quark/Gluon Imaging is the subject of the Center for Nuclear Femtography, which has attracted strong interest from interdisciplinary Data Science, Computer Science, Data Vistualization communities.
- Yesterdays Colloquium: Colloquium: Black Hole Imaging by Kazunori Akiyama illustrates the common challenge of forming images from sparse data:
 - Astrophysics
 - Femtography
 - Medical Imaging

