Electroweak Measurements of Neutron Densities in PREX (and CREX)

Rakitha S. Beminiwattha for PREX/CREX collaboration

Outline

- Overview
- Progress
- Future plans

Installation video: https://hallaweb.jlab.org/tech/pictures/RightSideCamera.AVI Hall A/C Meeting Summer 2019 2

PREX/CREX : Neutral Current as a Probe of the Neutron

Weak neutral current : A clean probe couples mainly to neutrons

 $Q_{\text{weak}}^{p} = 1 - 4\sin^{2}\theta_{W} \sim 0.076 \qquad Q_{\text{weak}}^{n} \sim -1$

Hall A/C Meeting Summer 2019

PREX/CREX : Neutral Current as a Probe of the Neutron

- e γ, Z⁰ Protons & Neutron Skin State Protons & Neutron Skin Protons & Neutron Skin Protons &
- Weak neutral current : A clean probe couples mainly to neutrons

$$A_{\rm PV} = \frac{\frac{d\sigma^{\rm R}}{d\Omega} - \frac{d\sigma^{\rm L}}{d\Omega}}{\frac{d\sigma^{\rm R}}{d\Omega} + \frac{d\sigma^{\rm L}}{d\Omega}} = \frac{G_{\rm F}Q^2}{2\pi\alpha\sqrt{2}} \left[1 - 4\cdot\sin^2\theta_{\rm W} + \frac{F_{\rm w}(Q^2)}{F_{\rm p}(Q^2)} \right] \qquad A_{\rm PV} \to 10^{-6}$$

 It provides theoretically clean method to measure neutron radius and skin thickness

$$A_{PV} \rightarrow F_W(Q^2) \rightarrow R_n \rightarrow (R_n - R_p)$$

Symmetry energy and Neutron Skin

- PREX can constrain the density dependence of the nuclear symmetry energy $E_{sym}(\rho)$ around normal density ρ_0 denotes as L in the plot below
 - For example, A larger L value implies a higher pressure in neutron matter and a thicker neutron skin in ²⁰⁸Ph

$$E_{\rm b} = a_{\rm V}A - a_{\rm S}A^{2/3} - a_{\rm C}\frac{Z(Z-1)}{A^{1/3}} - a_{\rm A}\frac{({\rm N}-Z)^2}{A} + \delta({\rm A},Z)$$

- Many areas of active research interested in L
 - Structure and the reactions of neutron-rich nuclei,
 - The physics of neutron stars and gravitational radiation from neutron stars

PREX Implications : Neutron Stars

Crab Pulsar

Courtesy of C.J. Horowitz and J. Piekarewicz

- R_N calibrates equation of state (pressure vs density) of Neutron rich matter
- Combine PREX $R_{\mbox{\tiny N}}$ with observed neutron star radii
 - Prediction for phase transition to "Exotic" Inner Core
- Some neutron stars seem too cold
 - Explained by cooling by neutrino emission (known as URCA process)?
 - Only if $(R_N R_p) \rightarrow 0.2 \text{ fm}$: URCA is probable
- LIGO and PREX
 - Gravitational wave observations of massive neutron stars during merger provides information on the equation of state (EOS) of nuclear matter (A. Bauswein and H.-T. Janka. Phys. Rev. Lett., 108:011101, Jan 2012)

 TITLE I CITED BY YEAR
 Measurement of the Neutron Radius of ²⁰⁸Pb through Parity Violation in Electron 422 2012 Scattering S Abrahamyan, Z Ahmed, H Albataineh, K Aniol, DS Armstrong, ... Physical review letters 108 (11), 112502

Why Two different Nuclei?

- Ab initio calculations only reach as far as medium nuclei such as ⁴⁸Ca
 - Experimental data from ²⁰⁸Pb and ⁴⁸Ca will provide a bridge between medium nuclei ab initio calculations and heavy nuclei Density Functional Theory (DFT) calculations.
- Correlations predicted between neutron skin of ²⁰⁸Pb and ⁴⁸Ca need experimental validations

Experimental Setup

- Two High Resolution Spectrometers (HRS) run simultaneously
 - Using a Septum magnet to reach our acceptance at small scattering angles
- Both ²⁰⁸Pb and ⁴⁸Ca provide large inelastic separation with HRS and have very long life time for a neutron excess nuclei
- Improved shielding and improved lead target design (and more targets!) allow for more statistics
- Improved constrains on systematics
- PREX E_{beam} = 0.95 GeV up to 70 uA
 - Aims to reach goal of $\Delta R_n \sim 0.06$ fm (a 1% measurement)
- CREX E_{beam} = 2.2 GeV up to 150 uA
 - Aims to reach goal of $\Delta R_n \sim 0.02$ fm (a 0.6% measurement)

Radiation Safety Measures

- New collimator to absorb most of the energy
- New shielding measures around target to septum area
- Lead diffusion barrier to minimize the sky radiation
- Magnetic shielding around septum beamline

S Meeting Summer 2019

Subsystems Updates

- Injector/beam delivery
 - Basic beam setup, Source and Parity Quality Beam setup are done
- Targets are ready
- Parity and Counting mode DAQ are ready
- Parity and Counting mode Data analysis tools are ready
 - Streamlining software workflows and minor software updates are still ongoing
- Spectrometer checkout ongoing: Dipole and quad tune study
- Integrating and Tracking Detector calibration with beam ongoing
- Polarimetry: Compton and Moller polarimeters are ready
 - Commissioning plans are coming up soon then followup with a spin dance

Laser/Injector/Beamline

- Basic beam setup, Source and Parity Quality Beam setup are done
 - The RTP Pockels Cell successfully produced e- beam
 - Both real-time charge and position feedback will be done
- Initial calibrations for BCM, BPM stripline, and BPM Cavities are done
- Small Angle Monitors (SAM) calibrations are ongoing
- Beam modulation
 - Hardware (accelerator) is ready
 - Software (accelerator) seems to be in place and tested
 - Software (control and DAQ) are demonstrated
 - Full BMod is currently tested with beam ON

Target Subsystem

- Production targets: 10 Pb and 2 Ca
- Two target ladders:
 - Warm: water cell and optics targets
 - Cryogenic: for Pb and Ca targets

Detectors

- Quartz detectors used for main measurement
- Six GEMs in each arm for high-rate acceptance measurements
- Additional detectors to better constrain transverse asymmetry (A_{T}) systematic
- New small angle monitors (SAM) for beam-line background monitoring

eting Summer 2019

Progress and Future

- Beam restoration and low current commissioning were completed
- Spectrometer Commissioning on going
 - Tracking checkout: sieve reconstruction, tune septum, inner edge search, Q1 acceptance scan etc.
- High current checkout on going
 - 40 uA beam current, bypassing the Compton chicane was done with acceptable Compton backgrounds
- Establish Production Conditions will follow after above steps
 - Includes BMod, polarimetry commission, spin dance, detector check outs, etc.
- Once all above are done <u>Start Production</u>

Summary

- <u>Big thank you</u> for Jessie Butler, Jack Segal and company for installation and tech support
- On track on all fronts to being ready for high current production running for PREX
- The PREX and CREX programs will measure ΔR_n to a precision of ±0.06 fm and ±0.02 fm, respectively
- Parity violating electron scattering gives a clean probe to access neutron distributions using weak force
- Neutron densities and skins contain information on heavy and neutron rich nuclear matter including neutron star structure

supplementary

- Plans for 240 Hz or 120 Hz flipping.
- 30Hz flip during CREX.
- Wien flips (suggested 1-2week time scale, will depends on what on beam conditions)
- Spin flipper study possible early January
- 499 MHz for PREX/CREX?

PREX : Earlier Results

Neutron Skin = $R_N - R_P = 0.33 + 0.16 - 0.18$ fm

PREX/CREX : Radiation Shielding

- PREX-II made many improvements over several PREX-I radiation damage issues
 - Damaging neutron (0.1 < E < 10 MeV) dose is reduced by 78% compared to PREX-I
 - High energy (E>10 MeV) photon dose is reduced by 80%
 - Collimator design is almost ready
 - Neutron radiation shielding optimization is underway
 - Final design will further improve dose reduction

Anticipated Errors

PREX-II at E = 0.95 GeV ; $A_{PV} = 0.6$ ppm

Systematic Error	Contribution
Charge normalization	0.1%
Beam asymmetries	1.1%
Detector non-linearity	1.0%
Transverse	0.2%
Polarization	1.1%
Inelastic contribution	< 0.1%
Effective Q2	0.4%
Total	2%

CREX at E = 2.2 GeV;
$$A_{_{PV}}$$
 = 2 ppm

Systematic Error	Contribution
Charge normalization	0.1%
Beam asymmetries	0.3%
Detector non-linearity	0.3%
Transverse	0.1%
Polarization	0.8%
Inelastic contribution	0.2%
Effective Q2	0.8%
Total	1.2%

Experimental Setur

- The septum magnet needs to reach 1350 A/cm³ using a dipole setup
 - Will require new power supply and LCW pumps
- Lead target assembly
 - 0.25 mm diamond layer + 0.5 mm Pb (9% radiator)
 - Cryogenically cooled frame
 - Will use thicker diamond layer to avoid PREX-I high current damage and there will be about 10 targets available
- Calcium target assembly
 - A 5% radiator
 - Must be isolated from air to prevent oxidization
 - Plans for ⁴⁸Ca target testing during PREX-II
- Quartz detectors will be used to integrate scattered electron signal over helicity windows
 - Place main detectors to minimize the inelastic dilutior

PREX-II Collimator Prototype De<u>sign</u>

- The collimator is placed about
 85 cm from the target and
 intercepts scattered electrons
 from 0.78° to 3.8°
 - A hybrid design where water cooled <u>Copper-Tungsten</u> <u>inner cylinder</u> contained in a <u>Tungsten rectangular box</u>
 - Estimated to deposit about
 2.1 kW of energy by the electrons
 - Collimator will be water cooled

Physics Motivation for Neutron Densities

- Proton density and radius are precisely known in contrast to neutron counterparts
- A precision measurement of neutron density is a powerful probe of symmetry energy

The asymmetry term in Semi-Empirical Mass Formula (SEMF)

$$E_{\rm b} = a_{\rm V}A - a_{\rm S}A^{2/3} - a_{\rm C}\frac{Z(Z-1)}{A^{1/3}} - a_{\rm A}\frac{({\rm N}-Z)^2}{A} + \delta({\rm A},Z)$$

- Difficult non-pQCD regime theoretical computations
- Highly model dependence extrapolation to extreme neutron densities in cases like neutron stars
- Therefore experimental guidance is very important

Neutron Density, Radius and Skin Thickness Provide constraints on neutron matter Equation Of State (neutron

 Provide constraints on neutron matter Equation Of State (neutron stars for instance) and symmetry energy

- Neutron thickness $\Delta R_{_{\text{np}}}$ is the difference in r.m.s. neutron and proton radii $\Delta R_{np}=R_n-R_p$
- A measurement of ΔR_{np} can be used to infer density dependence of the symmetry energy