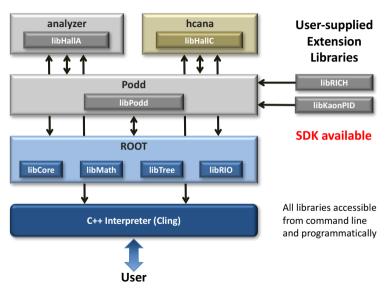
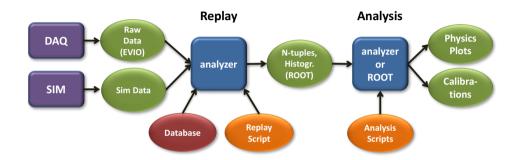
Hall A/C Analysis Software Introduction and Status

Ole Hansen


Jefferson Lab

Hall A/C Summer Collaboration Meeting June 28, 2019

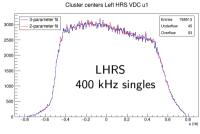

Hall A C++ Analyzer Framework ("Podd")

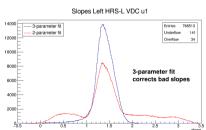
- C++ class library built on top of ROOT
- Features
 - Modular. Easily accommodates different experimental setups
 - ▶ Run-time configurable via ROOT script & text files. No recompilation necessary
 - Light-weight. Minimal dependencies, small memory footprint
 - Supported on Linux and macOS with ROOT 5 & 6
 - ▶ Non-standard equipment analyzed with experiment-specific plug-in libraries
- Hall C analyzer "hcana" implemented as a special Podd library
 - Different database format
 - Special "report" feature

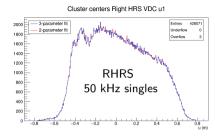
Podd/hcana as ROOT Extensions

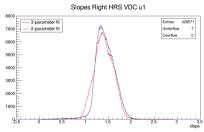
Analysis Flow

- Limitations
 - lacktriangle One-pass replay only: EVIO raw data ightarrow Flat ntuple-style ROOT trees + histograms
 - Currently single-threaded (serial) replay on single node only

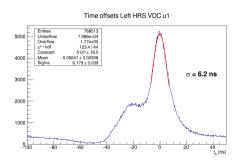

Podd Status

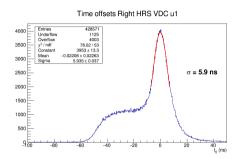

- Stable release: 1.6.6 (22 Feb 2019)
 - Used extensively by recent experiments (Tritium, APEX)
 - ▶ 1.6.6 adds optional CMake build system (from 1.7 branch)
 - ▶ Downloads and documentation at https://redmine.jlab.org/projects/podd/wiki
 - ▶ To be included in next release of JLab "Common Environment"
- Development version: 1.7.0-devel
 - Important new features (see next page)
 - Available on GitHub: https://github.com/JeffersonLab/analyzer
 - ► ETA: later in 2019


New in Podd 1.7


- High-rate VDC analysis (for APEX)
- Decoder upgrades
 - ► Supports CODA 3 data format, bank data and event block decoding (Bob Michaels)
 - ▶ Installs EVIO version 5.2 by default (better I/O performance and many bugfixes)
 - FADC decoders from Tritium experiments
- Abstracted database API
 - Lets hcana reuse Podd database readers
 - ▶ Allows easy integration of other backends (e.g. ccdb)
- Build system overhaul
 - CMake build system added (used by SBS, for example)
 - SCons build system significantly improved (used by hcana)
 - Old make system removed
- Extensive code cleanup & reorganization

VDC Cluster Analysis—2-Parameter vs. 3-Parameter Fit





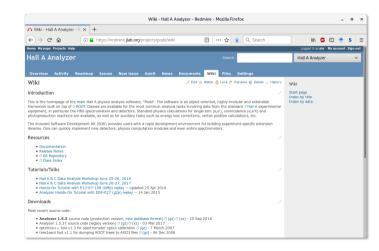
VDC Cluster Analysis—Drift Time Offsets from 3-Parameter Fits

• Shoulders at negative t_0 not yet understood

Recent hcana Developments (from Mark Jones)

- Nov 2018. Add delayed helicity decoding. See <u>commit</u> and <u>commit</u>
- Jan 2019. Fix large number of memory leaks. See commit and talk
- Feb 2019. Fix wrong sign in coincidence time pathlength correction. See commit and talk
- April 2019. Fix mistake in THcCoinTime.h which had variable as Int_t that should be Double_t. See <u>commit</u>
- May 2019. Modify THcDC.cxx. Previously hardcoded if combined number of spacepoints in chambers >10 then no track was made. Changed limit of maximum combined number of spacepoints to 100. See commit

Plans for Podd 1.8+


- Started/Considering (in anticipation of SBS)
 - Multithreading (10% done)
 - ▶ Output system upgrade (all data types, object variables; 75% done)
 - ► TBD: HIPO output file format support
 - ► TBD: EVIO 6 support (HIPO-like raw data files)
- Nice to have
 - Test suite (unit & integration tests)
 - Output metadata (configuration parameters, source & replay information)
 - Message facility (consistent log messages)

SBS Software Status & Plans

- SBS plan to use Podd framework. Anticipate to have multithreading available
- Standalone simulation well developed (g4sbs)
- Reconstruction library underway: https://github.com/JeffersonLab/SBS-offline
 - Decoders implemented for all subsystems
 - Optics & spin transport models done
 - GEM cluster finding & tracking under development (main challenge!)
 - Later: event display, online analysis
- Data handling will be challenging (by Hall A standards)
 - Raw data rates several GB/s. Will need preprocessing
 - ► Storage 200–1300 TB per experiment (sim+raw+prod) (4+ planned)
 - ► Simulation and analysis CPU requirements 1–4 M-core-hours (MCH) per experiment
 - ▶ Hall A farm quota is currently 4 MCH/year (5% of farm), probably need to double

Project Home: Redmine Wiki

- https://redmine.jlab.org/ projects/podd/wiki/
- Integrated wiki, bug tracker, document database and more
- Old Podd website completely migrated (documentation etc.)
- hcana docs on Hall C wiki

Good Starting Point for New Users: Analysis Workshops 2017/2018

- Workshop pages linked on main wiki
- Joint Hall A & C analysis workshops in summers 2017 & 2018
- Live hands-on tutorials, using preconfigured virtual machine environment
- Simulation, calibration, on- & offline data analysis, ROOT basics, etc.
- BlueJeans recordings available (linked on workshop page, CUE login required)

Next Workshop

- Two most recent analysis workshops drew strong interest. Do another one?
- Would like your input as to
 - Interest
 - Scope
 - Level
 - Date
- Instead of show of hands, please complete a quick online survey (5 minutes of your time):

https://www.surveymonkey.com/r/3YHR3HD

Thanks:) The survey will be available until next Friday, July 5.

Summary

- Hall A & C analysis software is alive and well. It is actively maintained and used by current experiments in both halls.
- Significant development work (e.g. multithreading) is advisable for Hall A's upcoming SBS program.
- Many learning resources, documentation and examples exist, in part thanks to recent analysis workshops.
- Please complete the online survey to help us plan a future analysis workshop.