Neutron Magnetic From Factor G_M^n from ${}^3H/{}^3He$ ratio

University of New Hampshire

Nathaly Santiesteban

Hall A/C Meeting Collaboration June 28/2019

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

P. Solvignon, J. Arrington, D. B. Day and D. Higinbotham (Spokepersons) Run Summary

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

oth

1-112 K

lso ava

ata froi

P. Solvignon, J. Arring Run Summary

Fall 2018 LHRS: Dedicated NN and 3N SRC study (1<xbj<3) with 4.3 GeV beam RHRS: QE scan

Nathaly Santiesteban x=1

2.0 -

Tyler Kutz x<1

May 2018: – QE scan with 2.2 GeV beam Dec 2017:

Commissioning Target "boiling" study (also QE data at Q2=0.4 GeV2)

Leiqaa Kurbany x=3

E12-11-112 Collaboration

This talk: G_M^n parasitic measurement

Data in the next slides was taken with the LHRS at Hall A

This talk: G_M^n parasitic measurement

Data in the next slides was taken with the LHRS at Hall A

Data was also taken in the low and high side of x to understand the cross-sections.

This region has ~8% discrepancy between the Anklin, Kubon data and the CLAS ratio and the Hall A polarized ${}^{3}He$ extraction.

Calibrations

BPMs positions plotted with the positions measured by the harp scans after calibration.

Courtesy of Jason Bane

Raster Calibration

(a) Raster Target X Position vs BPM X Target Position.

(b) Raster Target Y Position vs BPM X Target Position.

(c) Raster Target X Position vs BPM Y Target Position.

(d) Raster Target Y Position vs BPM Y Target Position.

Hague, T. Calibrating the Hall A raster (2019)

Courtesy of Tyler Hague

BCM

dnew signal was used to measure the charge.

Energy

- Due to the high rates: Only one run per target in each kinematic.
- Energy values were taken from the average root files values (HALLA_p) with I > 5 mA and coming from the arc measurement.
- The energy values are corrected by the scaling factor of 1.002 given by: <u>ENERGY MEASUREMENT</u>: Courtesy of Douglas Higinbotham

2) Optics

Same than G_M^p optics

Run 3118 with E = 2.222 GeV and θ = 25.952°.

Courtesy of the G_M^p collaboration

3) Detector Calibrations

Data Analysis

WWW. PHDCOMICS. COM

5) Pion Rejectors

Reaction Vertex

Overlapping Kinematics

MC Comparison

Data vs MonteCarlo

Preliminary Cross-Sections

Possible path to get G_M^n form factor from cross-section ratios to the:

Need from theory friends

- Pin down the systematics uncertainties of the measurement
- Find a good theory that can reproduce the cross-sections results
 - Noemi Rocco and Alessandro Lovato (Argonne National Lab) are already working on them.
 - Look into Saori Pastore (Washington University in St. Louis) work.
- Perform this careful analysis with the RHRS kinematic data available.