THE SEARCH FOR COLOR TRANSPARENCY OF PROTONS @ 12 GeV

In

HALL C, JEFFERSON LAB

Deepak Bhetuwal June 28, 2019

STATE MI

MISSISSIPPI STATE

OUTLINE

- Introduction
- Color Transparency (CT)
- JLab Experiment E12-06-107
- Experimental Setup
- Data VS Simulation (SIMC)
- Detector Calibration
- Efficiency Study
- Preliminary Yield and Transparency
- Work Status
- Summary

INTRODUCTION

Color transparency (CT) is a a unique prediction of Quantum Chromo Dynamics (QCD) where the final (and/or initial) state interactions of hadrons with the nuclear medium are suppressed for **exclusive processes** at high momentum transfers (Q²).

A clear signal for the onset of CT for baryons would show the transition from the nucleon-meson picture to quark-gluon degrees of freedom \rightarrow **Onset is signature for QCD degrees of freedom in nuclei.**

MISSISSIPPI STATE

COLOR TRANSPARENCY (CT)

- Introduced by Mueller and Brodsky, 1982.
 - \rightarrow arises in picture of quark-gluon interactions only.
 - Scattering takes place via selection of point-like configurations (PLC) with small transverse size squeezing (QM).
 - PLC's compact size is maintained while traversing through the nuclear medium **freezing (relativity)**.
 - Color field of singlet objects vanishes as size is reduced. PLC is color-neutral, passing through the nuclear medium undisturbed (nature of the Strong force as described by QCD).

CT ONSET

Signature for the onset of CT involves rise in а nuclear transparency (T_{A}) , as a function of the momentum transfer (Q²).

(nuclear cross section) (free nucleon cross section)

 $\sigma_{A}/A \rightarrow$ bound nucleon cross section

Clear signature of CT would be dramatic rise in T around Q_0^2 .

CT PAST EXPERIMENTS

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

CT RESULTS UNTIL NOW

PION

Hall C E01-107 pion electroproduction

June 27-28, 2019

RHO

CLAS E02-110 rho electroproduction

CT RESULTS UNTIL NOW

Plateau consistent with **PROTONS** conventional calculations ... Solid Pts - JLab **Open Pts -- other** 1 D 0.9 0.8 No evidence for, CT Transparency 0.7 0.6 0.5 0.4 20 0.3 Au 0.2 0.1 o 1 2 3 Q² (GeV/c)² 8 10 4 9

Onset of CT has been measured in Mesons but not in Baryons.

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

CT EXPERIMENT: E12-06-107

First experiment to run in Hall C in the 12 GeV era to take data using the new magnetic spectrometer SHMS (Super High Momentum Spectrometer) along with HMS (High Momentum Spectrometer)!

The experiment E12-06-107, to search for color transparency (CT) in protons, ran in Hall C at JLab in Spring 2018.

		Q² [GeV²]	SHMS angle [deg]	SHMS central P [GeV/c]	HMS angle [deg]	HMS central P [GeV/c]
~20 days of data taking with E _{beam} of 6.4 GeV and 10.6 GeV and up to 60 uA of beam current.	6.4 GeV beam	8.0	17.1	5.122	45.1	2.131
	ſ	9.5	21.6	5.925	23.2	5.539
Data collected over a wide range of 4 Q^2 points covering the region where a previous A(p,2p) experiment at BNL had observed an enhancement.	10.6 GeV beam	11.5	17.8	7.001	28.5	4.478
		14.3	12.8	8.505	39.3	2.982

MISSISSIPPI STATE

EXPERIMENTAL SETUP

DETECTOR HUT

SHMS

Drift Chambers (DC) Hodoscopes (HODO) Cerenkovs (HGC,NGC & Aerogel) Calorimeter (CAL)

Drift Chambers (DC) Hodoscopes (HODO) Cerenkovs (Gas, Aerogel) Calorimeter (CAL)

E12-06-107 DETECTORS

11

SHMS / HMS

Drift Chambers (DC) Hodoscopes (HODO) Cerenkovs (Gas, Aerogel) Calorimeter (CAL)

Plots from Holly S. Vance

12

SPECTROMETER QUANTITIES

Hydrogen: Q² = 8 GeV²

Plots from Holly S. Vance

13

PHYSICS QUANTITIES

Hydrogen radiative tails: Emiss spectra

Radiative effects in agreement with PWIA model in MC (SIMC)

UNIVERSITY_{TM}

June 27-28, 2019

Plots from Holly S. Vance

14

Jefferson Lab

Carbon radiative tails: Emiss spectra

Radiative effects agree with simulation in the tails

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

Plots from Holly S. Vance

CALIBRATION PLOTS

DRIFT CHAMBER CALIBRATION

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

CALIBRATION PLOTS

CALORIMETER CALIBRATION

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

CALIBRATION PLOTS

HODOSCOPE CALIBRATION

MISSISSIPPI STATE

COINCIDENCE TIME

Plots from Holly S. Vance

relative time difference between e- and p at the target

General coincidence time: $t_{coin} = t_e^{tar} - t_p^{tar}$

The time of each particle:
$$t_{e,p}^{tar} = (t_{e,p}^{trigger} - \Delta t_{e,p}^{corr})$$

Each particle time corrected for:

- Particle traveling along central ray to focal plane
- Path length variations
- Difference in time between hodoscope start and focal plane time

MISSISSIPPI STATE

DETECTOR EFFICIENCIES

MISSISSIPPI STATE

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

YIELD – PRELIMINARY

Plots from Holly S. Vance

TRANSPARENCY – PRELIMINARY

Joint Hall A & C Summer Collaboration Meeting June 27-28, 2019

STATUS OF THE WORK

Done with calibration of the detectors.

Improved HMS and SHMS efficiencies calculation.

We have improved HMS and SHMS optics now.

Analysis to understand systematics is ongoing \rightarrow full results expected by the end of the year!

SUMMARY

Measuring the onset of CT is a signature for the onset of QCD degrees of freedom in nuclei.

24

Experiment took 4 data points in Q² regime 8-14.3 (GeV/c)², region overlaps with Brookhaven data.

First experiment to run in the 12 GeV era in Hall C and to take data using both the SHMS and HMS.

Preliminary results do not show the onset of Color transparency in protons.

