Development of JLEIC Crab Cavity

Work in progress

Old DMINION UNIVERSITY

HyeKyoung Park JLab/ODU

JLEIC Collaboration Meeting

April 1-3, 2019

- ODU Subashini De Silva, Salvador Sosa, Jean Delayen
- JLab SRF Bob Rimmer, Frank Marhauser, Gunn Tae Park, Haipeng Wang, Jiquan Guo, Shaoheng Wang
- JLab CASA group Rui Li, Vasiliy Morozov
- JLab Engineering Josh Armstrong

Outline

- Crab cavity updates from new machine parameters
- Design choice of JLEIC
- HOM and damping
- Wakefields
- Multipoles and dynamic aperture
- Multipacting analysis
- Fabrication
- Summary and plan forward

EIC-ACM October 2017

Parameter	Electron	Proton	Units	Electron	Proton	Proton
Beam energy	10	100	GeV	10	100	200
Beam current	0.71	0.75	А	0.75	0.75	0.75
Max beam current	3	0.75		3	0.75	0.75
Bunch frequency	952.6		MHz	952.6		
Crab crossing angle	50		mrad	50		
Betatron function at IP	1	0	cm	10	10	33
Betatron function at crab cavity	200	363.44	m	200	450	450
Integrated transverse voltage per beam per side	2.8	20.8	MV	2.8	18.7	20.6

Today

Design Choice – 952 MHz 2-cell RFD

Design Survey

	Squashed Elliptical	Single- Cell RFD	Two-Cell RFD	Three-Cell RFD	Single-Cell RFD	Unit
Frequency		ļ	952.6		476.3	MHz
Aperture			70		70	mm
LOM	691.9	None	846	756.8, 862.2	None	MHz
LOM Mode Type	Monopole	-	Dipole	Dipole	-	
1 st HOM	1040.8	1411.5	1379.5	1335.4	746.2	MHz
E_p/E_t	2.2	5.4	5.66	5.6	3.73	
B_{p}/E_{t}	7.7	13.6	11.64	11.4	6.52	mT/(MV/m)
$[R/Q]_t$	49.8	50	147.5	218.8	357	Ω
G	339.8	165.7	169	178.9	130	Ω
$R_t R_s$	1.7×10 ⁴	8.3×10 ³	2.5×10 ⁴	3.9×10 ⁴	4.7×10 ⁴	Ω^2
Total V _t (e/p) (per beam per side)	2.81 / 20.8					MV
<i>V_t</i> (per cavity)	1.5	0.86	1.9	3.1	3.4	MV
No. of cavities (<i>e</i> / <i>p</i>)	2 / 14	4 / 25	2 / 11	1/7	2 / 11	
Ε _ρ	21	30	34	39	40	MV/m
B _p	70	70	70	70	70	mT

JLEIC Collaboration Meeting

Frequency [MHz]	Туре	V_transverse [MV]	E_peak [MV/m]	B_peak [mT]	
400	LHC P-o-p single cell	7	75	130	
400	LHC SPS prototype #1	4.4	42	73	
400	LHC SPS prototype #2	5.8	56	96	
499	Cebaf deflector P-o-p	4.2	40	61	
750	EIC P-o-p	2.7	60	126	

Peak magnetic field up to 70 mT seems to be very reasonable. JLEIC CC expected to have about 30% head room.

April 1-3, 2019

Cavity voltage or gradient is mostly limited by peak magnetic field. Cavity RF parameters provide prediction of required number of cavities.

RF Properties	Unit	10 GeV e	100 GeV p	200 GeV p			
Required kick	MV	2.8 18.7		20.6			
Ep/Et	-	5.66					
Bp/Et	mT/(MV/m)	11.64					
R/Q transverse	Ω	148					
G	Ω	169					
Bp/Ep	mT/(MV/m)	2.06					
Target Bp	mT	70					
Vt at target Bp	MV	1.89					
Required number of cavities/side	-	1.5 → 2	9.9 → 10	10.9 → 11			
Power dissipation/cavity	W	4 (assuming total $R_s=30n\Omega$)					

Proposed number of cavities are 2 at electron ring and 12 at ion ring.

JLEIC Collaboration Meeting

HOMs

Some port modes present

Transverse-X
Transverse-Y
Longitudinal

JLEIC Collaboration Meeting

Wakefields – Longitudinal

Wakefields – Transverse Y

Wakefields – Transverse X

Problem Modes and Further Damping Examples

Multipacting Analysis

- Multipacting analysis done using Track3P package in SLAC ACE3P code suite
- Resonant particles are traced:
 - for 50 rf cycles
 - with impact energies 50 2000 eV
- Most of the resonant particles have low impact energies and resonance occurs at low transverse voltage ($V_{\rm t}$)
- Resonances at operating $V_{\rm t}$ of 1.5 MV (e) and 1.9 MV (p) have low impact energy.
 - -Past experience with other RFD cavities have shown multipacting levels can be processed completely

April 1-3, 2019

MINION NIVERSITY

Multipole Analysis

	Bare Cavity	Cavity with HOMs	Unit
$V_{\scriptscriptstyle acc}$	2.5×10-4	12.7	kV
V_{t}	1	MV	
b_{1}	3.33	3.33	mT m
b ₂	-1.9×10-4	0.85	mT
b ₃	968.5	971.7	mT/m
b ₄	0.4	103.5	mT/m²
b₅	-4.1×104	-4.1×104	mT/m₃
b ₆	-641.5	1702.8	mT/m₄
b 7	-7.0×10 ⁷	-7.2×10 ⁷	mT/m₅

Input Power

$$P_g = \frac{(1+\beta)^2}{4\beta R_t} \times \left\{ \frac{1}{\cos \alpha_L} \left(|V_t| + \frac{I_b R_t}{1+\beta} k\Delta x \sin \phi_c \right) \right\}^2$$

Electron ring: maximum requirement case of 7GeV 3 A, 2 cavities per side

Ion ring: maximum requirement case of 200GeV 0.75A, 12 cavities per side

16

JLEIC Collaboration Meeting

Power Coupling

- Power coupler location and coupling capacity, preferably same type and location for both electron and ion cases.
- Electron ring $Q_L = 6 \times 10^4 2 \times 10^5$
- Ion ring $Q_L = 4 \times 10^5 2 \times 10^6$

This particular geometry Q_{ext} =8.25×10⁴ Actual port expected to be larger and away from cavity.

April 1-3, 2019

Fabrication

- Proof of principle bare cavity will be fabricated first.
- Cavity meets pressure safety requirement.
- Nb has been ordered.

Beam pipes are made Being trimmed for brazing Structural analysis Room temperature material property External pressure 2.2 atm Thickness 2.7 mm considering tolerance, material removal and thinning during forming Results satisfactory

Fabrication Plan of Crab Cavity

OLD DMINION UNIVERSITY

• Procurement of forming dies in progress.

Lessons Learned from LHC SPS Test

• Careful pick up probe design to minimize beam interaction.

Beam induced voltage

• JLab experience of LHC crab cavity

April 1-3, 2019

Fabrication Processing Assembly Test

- Number of cavity designs have been studied and down selection is made.
- HOM spectrum (frequency and R/Q) has been characterized and development of damping scheme is on going.
- Close collaboration with beam impedance group to specify the damping requirements.
- Design of bare cavity is complete and fabrication has been initiated.
- Collaboration between ODU, JLab, BNL and CERN to incorporate lessons learned from SPS crab cavity test to JLEIC crab cavity.
- To be completed
 - -Wakefield analysis and damper design.
 - -In parallel completion of bare cavity.
 - -Bench test and cryogenic test to confirm the study results.
 - -Design of prototype cavity incorporating bare cavity test and damper design.
 - -Continuing full involvement in crab SYSTEM (including beam physics and engineering).

Thank you!

JLEIC Collaboration Meeting

EIC Accelerator Collaboration Meeting

October 29 - November 1, 2018

			1	1			1
Beam energy	GeV	3	5	6.9	9	10	12
Beam current	А	3	3	2.6	1	0.67	0.17
Total SR power	MW	0.4	2.9	8.8	9.8	10.0	5.3
Energy loss per turn	MeV	0.12	0.93	3.4	9.8	14.9	30.8
Energy spread	10-4	2.8	4.6	6.4	8.3	9.3	11.1
Transverse damping time	ms	375	81	31	14	10	6
Longitudinal damping time	ms	187	40	15	7	5	3
Normalized hor. emittance	um	9.6	44	116	258	354	612
Normalized ver. emittance	um	1.1	5.0	13.1	28.9	39.7	68.6

April 1-3, 2019