Multipole effects of a harmonic kicker

Gunn Tae Park

Jefferson Lab, Newport News, VA

on behalf of

Jefferson Lab

Shaoheng Wang, Jiquan Guo, Robert Rimmer, Matt Marchlik, James Henry, and Haipeng Wang

EIC Accelerator Collaboration Meeting

April 1 - April 3, 2019

The harmonic kicker in Circulator Cooler Ring (CCR)

• A harmonic kicker system is a group of cavities that transit electron bunches between the ERL ring and the CCR.

Parameters	Current			
Beam energy	55 MeV			
Kick angle	2.5 mrad			
fb	476.3 MHz			
$Q_{\mathfrak{b}}$	1.6 nC			
Turns	11			
\mathbf{f}_{kick}	86.6 MHz			
Energy spread	3E-04			
Bunch length	20 mm			
$\alpha_{x} = \alpha_{y}$	0			
$\boldsymbol{eta}_{\mathrm{x}}=\boldsymbol{eta}_{\mathrm{y}}$	120 m			
$\boldsymbol{\varepsilon}^{n_{x}} = \boldsymbol{\varepsilon}^{n_{y}}$	36 µ m			
Beam distr.	Beer can			

The requirements on harmonic kicker

Requirements	Implementation			
The kicked bunches are uniform (with no angular spread).	A single frequency pre-/post- kicker			
The bunches between the kicks are not affected by residual kicks	A pair of the kickers are separated by π phase			
The number of the modes and the kickers better be as small as possible.	The kick consists of 5 (odd) harmonic modes of 86.6 MHz (in one cavity).			
The total dissipated power of the kicker must be minimized.	A careful RF/engineering design of the cavity			
The kick must be stable against the various degrading conditions.	An efficient frequency tuning system and RF control.			

The profile of harmonic kick

The beam dynamics simulation with ELEGANT

Quarter wave resonator as harmonic kicker

Tuner design

• Linear approximation of frequency response to the tuner insertion

 $\Delta f_k = T_{ki} \Delta S_i$

 Δf_k is frequency deviation of k-th mode, T is tuning sensitivity matrix, and Δs_i is displacement of i-th stub.

Tuning sensitivity matrix (around the default insertion depth l = 15 mm) [MHz/mm]

Power coupler design

RF Power and figures of merit

With beam loading, RF power from the RF source that maintains constant voltage in the cavity is given as

$$P_{g} = \sum_{n=1}^{5} \frac{V_{\perp,n}^{2}}{R_{\perp,n}} \frac{(1+\beta_{n})^{2}}{4\beta_{n}} \left[\left(1 + \frac{kaR_{\perp,n}}{1+\beta_{n}} \frac{I_{b}}{V_{\perp,n}} \sin \phi_{s} \right)^{2} + \left(2Q_{L,n} \frac{\delta f_{n}}{f_{n}} - \frac{kaR_{\perp,n}}{1+\beta_{n}} \frac{I_{b}}{V_{\perp,n}} \cos \phi_{s} \right)^{2} \right]$$

With $I_{b} = f_{k}Q_{b} = 0.35$ mA, $\phi_{s} = 0$ (deflecting phase),
$$\approx \sum_{n=1}^{5} \frac{V_{\perp,n}^{2}}{R_{\perp,n}} \frac{(1+\beta_{n})^{2}}{4\beta_{n}}$$

Figures of merit

Modes	f (MHz)	TTF	$R_{sh}\left(\mathrm{M}\mathbf{\Omega} ight)$	P_d (kW)	Q_0	Δf/f	β	P_g
1	86.6	1	0.95	0.37	6.47E+03	±4E-04	0.7	0.38
2	259.8	0.98	0.87	0.69	1.11E+04	±2E-04	1.2	0.70
3	433	0.94	0.61	0.99	1.44E+04	±2E-04	1.2	1.00
4	606.2	0.88	0.42	1.44	1.67E+04	±1E-04	1.1	1.44
5	779.4	0.80	0.23	2.52	1.58E+04	±1E-04	1.1	2.53

Transverse profile of the fields

beam ay

3.21e+07

2.8e+07 -2.4e+07 -2e+07 -1.6e+07 -

1.2e+07 -8e+06 -

4e+06 ·

• Because of lack of vertical symmetry of the QWR, the kick is expected to have some multipole components.

Beam size: $\sigma = 6.25$ mm

Assuming γ =110, β =120m, ε_n =36 μ m @kicker

Multipole fields of the QWR

• We evaluate multipole transverse fields in terms of multipole coefficients of longitudinal fields via Panofsky-Wenzel theorem.

$$\Delta p_y = -\frac{e}{\omega} Re \left\{ i \int_{-\infty}^{\infty} dz \, \nabla_y E_z \bigg|_{\vec{r}=\vec{r}_0} \right\}$$
$$= \frac{e}{\omega} \sum_n nr_0^{n-1} Re \left[ie^{i(n-1)\phi_0} c_n \right]$$

Spatial factor obtained from 3D field map (CST simulation)

$$c_n = \frac{1}{\pi} \int_{-\infty}^{\infty} \left[\int_0^{2\pi} E_z(\vec{r}) e^{-in\phi} d\phi \right] \frac{1}{r^n} \sin\left(\frac{2\pi fz}{c}\right) dz$$

The refined mesh for multipole field evaluation

Spring 2019 EIC Accelerator Collaboration Meeting

Multipole fields coefficients

Multipole fields cancellation scheme (@ $E_e = 55$ MeV)

Simulation results for 55 MeV Scheme

The double-kicker cancellation scheme (@ $E_e = 110$ MeV)

Simulation Scheme for 110 MeV scheme

HOM power spectrum

• The general analytical formula for induced voltage by n-th mode in the cavity is

cavity and total average power are

$$\begin{split} P_n(t) &= \frac{V_n^2(t)}{Q_L \cdot R_{\parallel,n}/Q_0} \\ P_{ave} &= \sum_{\text{April 1 - April 3, 2019}} P_{n,ave} = \sum_n \frac{1}{T} \int_0^{1/f_b} dt \, P_n(t) \\ \int_0^{1/f_$$

The time structure of the beam current *I* in the CCR

Impedance spectrum

In wake field simulation, the locations of the peaks in (real) impedance spectrum were identified with resonant frequencies and the peaked values were with the shunt impedance, which is more accurately computed by CST Eigensolver. .

```
<sup>19</sup> Jefferson Lab
```

Impedance spectrum

• In wake field simulation, the locations of the peaks in (real) impedance spectrum were identified with resonant frequencies and the peaked values were with the shunt impedance, which is more accurately computed by CST Eigensolver. .

Thermal/Structural Analysis of the QWR

Temperature distribution @ power ~ 6.3 kW

Fabrication Plan

Motorized stub station

Rotatable flange

- Design review is upcoming and kicker cavity will be fabricated soon.
- The subsequent development would be about the power (and pickup) coupler, tuning system, RF source (SSA), vacuum system, and control system.
- In particular, one option for power supply is 5 narrow band amplifier for 5 harmonic modes and high-power harmonic combiner.

Vacuum pump

Low Level RF Harmonic Driver Developed by Electrodynamics, SBIR-I Project

Electrodynamics developed standalong HAWG with a Tektronix oscilloscope and a PC based LLRF controller^{il 1 – April 3, 2019}

6-channel 1W Harmonic Arbitrary Waveform Generator (HAWG)

