### JLEIC COLLABORATION MEETING SPRING 2019

Thomas Jefferson National Accelerator Facility Newport News, VA

### April 1 - 3, 2019

A high energy high luminosity polarized electron-ion collider was identified and recommended by the US DOE/NSF Nuclear Science Advisory Committee (NSAC) as the next major US nuclear science research facility in its 2015 Long Range Plan (LRP).

JLEIC, an electron-ion collider based on the CEBAF recirculating Superconducting RF linac, has been proposed at Jefferson Lab for responding to this NSAC-LRP recommendation and as the lab's future nuclear science program beyond 12 GeV CEBAF fixed target program. The design studies and accelerator R&D of JLEIC have been actively pursued over the last ten years by Jefferson Lab staff and external collaborators.

FFERSON LAE

Meeting will take place in CEBAF Center conference room F113.

CONTACT: Tristan Jones, tristan@jlab.org 757-269-6330

www.jlab.org/conferences/jleic-spring19

## The Machine-Detector Interface & Polarimetry

Charles Hyde Old Dominion University Norfolk VA





### Interaction Region is the Whole Machine

- Forward Tagging
- Spin Transport
- Polarimetry
- Luminosity Measurement



### Ion Forward Detection: I.

- Spectator neutrons, protons in light nuclei
  - Rigidity K = momentum/charge
  - Proton in deuteron  $(K_p K_d)/K_d = -1/2$
  - Neutron in deuteron  $\frac{\Delta K}{K_d} = \infty$
  - Proton in <sup>3</sup>He:  $\binom{K_p K_{He}}{K_{He}} = -1/3$
  - Deuteron in <sup>3</sup>He:  $(K_d K_{He})/K_{He} = +1/3$
- Resolve the quark-gluon structure of a nearly free nucleon when spectator nucleon has momentum  $ZP_0/A$
- Resolve interacting nucleons via large rigidity shift (+/- 10%)

## Ion Forward Detection: II.

- Residual Nuclei in Heavy Nuclei
  - <sup>207</sup>Pb in <sup>208</sup>Pb :  $\frac{\Delta K}{K} = -0.48\%$  at the limit of 10 $\sigma$  beam envelope • <sup>207</sup>Th in <sup>208</sup>Pb :  $\frac{\Delta K}{K} = +0.75\%$
- Tag the eA impact parameter:
  - Tag on [top 3%] baryon multiplicity, smallest residual nucleus:
  - Boost the sensitivity (~x2) to gluon saturation





C. Hyde, JLEIC Collaboration

### Ion Forward Detection: III.

- Femtography:
  - Deep Virtual Exclusive Reactions
  - $e + {}^{A}Z \rightarrow e + {}^{A}Z + V$ ,  $V = \gamma, \rho, \phi, \pi, K, J/\Psi, ...$
  - $^{A}Z = p$ , d, He tag final state nucleus for  $x_{B} > 0.005$
  - Medium to Heavy nuclei, veto on forward break-up
    - Detectors inside Dipole-3

## Forward Tagging and target jet

Better, updated images of tracking detectors: D. Romanov Update on JLEIC Detector Design **Morning Detector Session** 



-30

dipole

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

-40

<u>س</u> ×

DS6



## Electron Beamline

- Several kilowatts of synchrotron radiation in Interaction Region from upstream electron quads.
  - Mostly from beam halo
  - 1 cm radius cooled collimator 1m upstream of IP
  - 3 cm radius central beam chamber
    - PEP-II: 2 layer Be beam pipe with water cooling middle layer 30 μm gold inner coating to absorb soft X-rays
    - eRD21 R&D study in progress of vertex tracker occupancy
- Downstream Chicane
  - Electron Compton Polarimeter
  - Post-vertex tagging of quasi-real photo-production
  - 0° Beamline for luminosity monitor (photons)



## Luminosity Monitor

- 0° line in eBDS1
  - Vacuum line to TAC
- Bremsstrahlung flux into TAC 5 GeV/bunch @ L=10<sup>34</sup>/cm<sup>2</sup>/sec
  - Total Absorption Calorimeter (TAC) technology is challenging Liquid Ar ionization? Quartz W sandwich sampling?
- Space is cramped for vertical bend Pair-Spectrometer (PS)
- ECal in front of eQDS1 is 3<sup>rd</sup> technology for Luminosity Monitor





### Quasi-Real Photons, Zero-Degree Electrons

- eBDS1 (& matched eBDS6) are C-magnets with open aperture for photon tagging
- Tagged  $\gamma$ p luminosity
  - $dL_{\gamma p} \approx t^V L_{ep} \frac{dk_{\gamma}}{k_{\gamma}}$ •  $t^V = (\cdots) \alpha_{QED} \approx 0.02$
  - $L_{\gamma p} \approx t^V L_{ep}$  for  $k_{\gamma} > k_e/3$





## Electron Polarimetry: Laser Compton Backscattering

- eBDS1 (& matched eBDS6) are C-magnets with open aperture for photon tagging
- Tagged  $\gamma$ p luminosity
  - $dL_{\gamma p} \approx t^V L_{ep} \frac{dk_{\gamma}}{k_{\gamma}}$ •  $t^V = (\cdots) \alpha_{QED} \approx 0.02$
  - $L_{\gamma p} \approx t^V L_{ep}$  for  $k_{\gamma} > k_e/3$



## Ion Polarimetry

• RHIC

- Coulomb Nuclear Interference: tag slow recoils near 90° from "fixed target"
- $\vec{p} + \vec{H}(atomic \, jet) \rightarrow p(90^{\circ}) + X$ 
  - Absolute polarization, but slow ~ 1/fill
- $\vec{p} + C(foil) \rightarrow C(90^{\circ}) + X$ 
  - Fast, but relative polarization only
- Deuterium, <sup>3</sup>He
  - Need dedicated polarized atomic jets
  - For deuterium, coherent n and p approximately cancel
    - Resolve n, p scattering by tagging scattering angle of downstream "beam" proton
    - $\vec{d} + C(foil) \rightarrow C(90^\circ) + p(> 0.5mrad) + X$
    - Diffractively scattered proton from beam has half the momentum of the deuteron



### Coulomb-Nuclear Interference: pC and pH Scattering





# Energy-Time Correlation RHIC pC



• Impossible to resolve C signal from p,  $\alpha$ ,  $\pi$  background with EIC bunch rep rate of 2 – 10 ns



# Possible/Necessary Improvements for EIC (relative to RHIC even for protons)

- Thinner C foil target
  - RHIC foils are 5  $\mu$ g/cm<sup>2</sup>
  - Graphene?
    - Resolve energy-angle correlation of scattering vertex
- Improved timing & energy resolution of Si sensor
  - Current energy resolution is >10x worse than statistical limit
  - Timing resolution of 10 ps 'advertised' for future LGAD sensors
  - Thinner Si sensor (50  $\mu$ m) backed by punch-through detector
  - Thin gas counter (5 Torr, with ultrathin window) for  $\Delta E$  detector
- Downstream spectrometer
  - High  $\beta$  at polarimeter target, resolve scattering angles > 0.5 m at secondary focus after first dipole

## Thank you



- $p, \alpha, C$  PID from  $\Delta E/E$  measurement
- Borrow concepts from low energy nuclear physics
- 5 Torr gas detector ~ 1 cm in front of Si-strip detector
  - Vacuum window must be as thin as target foil (5 μg/cm<sup>2</sup>). Support window with micro-mesh.





## Polarimetry Conclusions

- R&D needed
  - Feasible with existing beams at RHIC, Jlab
- References
  - HOkada\_*etal*\_pp\_AN\_CNI\_PhysLettB\_6**38**(2006)450
  - YMakdisi Journal of Physics: Conference Series 295 (2011) 012130 doi:10.1088/1742-6596/295/1/012130
  - HHuang\_RHIC\_pC\_IBIC2014\_mopd01
  - H.Huang, IPAC 2015 Richmond VA, BNL-107425-2015-CP
  - B. Z. Kopeliovich, T. L. Trueman PHYSICAL REVIEW D, VOLUME 64, 034004
  - K. Shima, Phys Rev A 40 (1989) 3557
  - I.G. Alekseev, AIP Conf Proc **675**, 812 (2003); <u>https://doi.org/10.1063/1.1607247</u>
  - J. Tojo, *et al*, PRL **89** (2002) 052302-1
  - W.R. Lozowski, NIM **590** (2008) 157



### Van der Meer Scans

- Absolute determination of Luminosity
  - Monitor a physics rate as the colliding beams are scanned across each other in 2D
  - Requires precision measurement of beam currents and collision centroid stability (3-D)
  - Does not require *a priori* knowledge of cross section.
- Interupts experimental data taking
  - Not a continuous monitor
- V. Balagura, NIM A **654** (2011) 634–638
  - RHIC: (IPAC'10, Kyoto Japan, May 2010 proceedings)
    - K.A. Drees, S.M. White, Vernier scan results from the first RHIC proton run at 250 GeV,
  - LHC:
    - M. Ferro-Luzzi, Determination of the luminosity at the LHC experiments, in: Proceedings of ICHEP'10, Paris, July 2010, published in PoS (ICHEP 2010) 010:
    - S.M. White, et al., First luminosity scans in the LHC, in: Proceedings of IPAC'10, Kyoto, Japan, May 2010.



### Bremsstrahlung

- At  $\mathcal{L} = 10^{33} / cm^2 / sec$ :
  - Bremsstrahlung power ~ 0.04 Watt
  - Angular distribution dominated by *rms* angular spread of  $e^-$  beam: Photon *rms*  $\approx$  4 mm @ 20 m
  - Total Absorption ECal dose (10<sup>7</sup> sec exposure per year)
    - 0.4 MGray/year
    - Each photon absorbed in ~ 1 kg of high-Z material
    - Calorimeter options
      - Liquid Argon
      - Quantameter (SLAC 1960s): Alternating HV plates in vacuo
        - D. Yount, NIM **52** (1967) 1-14
        - R. Anderson, NIM 65 (1968) 195–198
      - Calibrate with electron beam?
  - Pair Spectrometer (ZEUS method)
    - Rate is tunable (detector out of synchrotron and brem beam)



## QED Compton: HERA experience

- Challenges:
  - acceptance, alignment, absolute precision
- E. Aaron (H1 collaboration) Eur. Phys. J. C (2012) 72:2163
  - DOI 10.1140/epjc/s10052-012-2163-2
  - Erratum DOI 10.1140/epjc/s10052-014-2733-6
  - Electron gamma detection at 10° to 25° from *e*<sup>-</sup>beam
- Theory:
  - A. Courau, P. Kessler, Phys Rev D 46 (1992) p. 117
  - K. Gaemers, M. van der Horst, Nuclear Physics B **316** (1989) 269-288: (Small angle theory, simulation)
- Compton22 Generator:
  - V. Lendermann, et al., Eur. Phys. J. C 31, 343 (2003). hep-ph/0307116

### Luminosity Monitor: HERA Summary



### Luminosity Detector

### Concept:

- Use Bremsstrahlung  $ep \rightarrow epy$  as reference cross section
- different methods:
- Bethe Heitler, QED Compton, Pair Production
- Hera: reached 1-2% systematic uncertainty

### Goals for Luminosity Measurement:

- Integrated luminosity with precision δL/L< 1%</li>
- Measurement of relative luminosity: physics-asymmetry/10 → ~10<sup>-4</sup> - 10<sup>-5</sup>

### EIC challenges:

- with 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup> one gets on average 23 bremsstrahlungs photons/bunch for proton beam
   → A-beam Z<sup>2</sup>-dependence
- Need more sophisticated solution
- BH photon cone < 0.03 mrad</li>
  → acceptance completely dominated by lepton beam size



### pair spectrometer

low rate

- High precision measurement for physics analysis
- The calorimeters are outside of the primary synchrotron radiation fan

### zero degree photon calorimeter

high rate

- Fast feedback for machine tuning
  measured energy proportional to # photons
- subject to synchrotron radiation

E.C. Aschenquer

### Set up at ZEUS



At H1



R. Yoshida