

Nb₃Sn Technology for High Field Accelerator Magnets

Alexander V Zlobin (Fermilab) JLEIC Collaboration Meeting Spring 2019 02 April 2019

Outline

JLEIC plan include stage 2 with magnetic field to be increased from 6.16 T by a factor of 2 to 12.3 T. It requires using Nb_3Sn accelerator magnets. In this talk I will discuss

- Present status of Nb₃Sn accelerator magnet technology
 - Nb₃Sn wires and cables
 - Coil design and technology
 - Mechanical structures
 - Quench performance
 - Field quality
 - Performance reproducibility
 - Technology scale up
 - Application in accelerators
- R&D directions
- Remarks on Nb₃Sn magnets for JLEIC
- Summary

Introduction

- Nb₃Sn accelerator magnet history
 - 1967 the first Nb₃Sn quadrupole model
 - 1989 the first 9.5 T dipole model
 - 2018 record dipole field of 14.6 T (FRESCA2, CERN)
- The book
 - ~450 pages on Nb₃Sn accelerator magnet (dipoles) designs, technologies and performance
 - written by world experts in Nb₃Sn accelerator magnet technologies
 - open access
 - available in June 2019

Particle Acceleration and Detection Editors **Daniel Schoerling and** Alexander Zlobin Nb₃Sn Accelerator Magnets **Designs, Technologies, and Performance**

🗲 Fermilab

Nb₃Sn wires and cables

- Nb₃Sn composite wire
 - Bronze, IT and PIT
 - Cu matrix, RRR~250
 - OD=0.5-1.0 mm
 - D_{eff}~23-85 mcm
 - SC after HT reaction, brittle, flux jumps, large M
- Rutherford cable
 - N<60, PF~85-87%</p>
 - SS core
 - I_c degradation <5%
 - I_c sensitivity to P_{tr}

Nb₃Sn coil technology

- R&W vs W&R
- Metallic components
- HT insulation

Coil winding and curing, Ceramic binder

Cos-theta coils

Coil reaction, radial and azimuthal expansion gaps

Coil epoxy impregnation to reinforce brittle insulation

Block-type coil

Coil transportation at different stage, storage, etc.

Mechanical structure

- Coil-collar-yoke-skin
- Coil-yoke-Al clamp-skin
- Coil-yoke-Al shell-skin

Nb₃Sn magnet quench performance

Nb₃Sn magnet field quality

 Coil magnetization and iron saturation effects are well understood and effectively corrected

🛟 Fermilab

Performance reproducibility

🚰 Fermilab

good reproducibility of FQ

Technology scale up

First 4 m long Nb₃Sn dipole coil (2008)

The first 5.5 m long 11 T MBH dipole prototype in its cryostat at CERN. (2018)

7.15 m long Nb3Sn quad coil (CERN)

Long coil performance is being optimized

Application in accelerators

- 2019-2020 (LS1) 1 (or 2) 11 T dipole assembly near IP7
 total length of Nb3Sn magnets ~11-22 m
- 2024-2025 (LS2) 4 triplets around IP1 (ATLAS) and IP5 (CMS)
 - total length of Nb3Sn magnets ~130 m

Nb₃Sn accelerator magnet R&D

- Quench performance improvement
 - High J_c wire with APC (FNAL/OSU/Hipertech) increase margin
 - High C_p wire (FNAL/Hipertech/Bruker) reduce sensitivity to perturbations
 - New epoxies reduce perturbations
 - Stress management reduce perturbations, minimize degradation

Nb₃Sn magnets for JLEIC stage 2

- B_{nom}~12.3 T at 4.5 K
- Aperture: ~100 mm
- The field level in 100 mm aperture has been demonstrated
 - FRESCA: B(4.5K)=13.8 T in 100 mm bore
 - Design optimization is needed
 - with 20% margin => B_{des} ~15 T
- Length: 2 x 4 m canted 2 degrees, or 8 m curved
 - ~4-8 m long coils are being produced and used
 - curved magnets are possible but need to be demonstrated
 - quench performance optimization to be done
- These magnets may also need stress management

Summary

- Nb₃Sn high field accelerator magnet technology made significant progress during past 25 years
 - quite well understood, reliable, reproducible, scalable
- Application in LHC is planned for this year
- Parameters for JLEIC Stage 2 magnets are realistic and achievable
- Focused R&D (~3-5 years) is needed to optimize magnet parameters, technology and cost
 - collaboration with US-MDP would help
- Nb₃Sn magnet production capabilities will be available in US and Europe after completion by ~2025 of the HL-LHC project

