Feedback System Specifications Transverse Feedback

D. Teytelman

Dimtel, Inc., San Jose, CA, USA

JLEIC Spring Collaboration Meeting

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Outline

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Summary

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Summary

・ロト・国ト・ヨト ヨー うへの

- Instability control systems require the designers to make a large number of choices:
 - Overall topology;
 - Pickups location, requirements;
 - Front end(s) technology, limitations;
 - Feedback controller;
 - Back end(s) power amplifiers, kicker design;
- This talk will attempt to reduce the search space and to simplify the design process;
- Of course, there are limits to applicability of such simplified process these will be pointed out.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- Instability control systems require the designers to make a large number of choices:
 - Overall topology;
 - Pickups location, requirements;
 - Front end(s) technology, limitations;
 - Feedback controller;
 - Back end(s) power amplifiers, kicker design;
- This talk will attempt to reduce the search space and to simplify the design process;
- Of course, there are limits to applicability of such simplified process these will be pointed out.

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- Instability control systems require the designers to make a large number of choices:
 - Overall topology;
 - Pickups location, requirements;
 - Front end(s) technology, limitations;
 - Feedback controller;
 - Back end(s) power amplifiers, kicker design;
- This talk will attempt to reduce the search space and to simplify the design process;
- Of course, there are limits to applicability of such simplified process these will be pointed out.

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Machines

Ring	C, m	E, GeV
MLS	48	0.1–0.6
HLS	66	0.8
LNLS UVX	93	0.5–1.37
MAX IV 1.5 GeV	96	1.5
DAΦNE	98	0.51
Duke SR-FEL	108	0.2-1.2
ANKA	110	0.5–2.5
DELTA	115	1.5
TLS	120	1.5
ELSA	164	1.2-3.2
Indus-2	173	0.55–2.5
Photon Factory	187	2.5
ALS	197	1.9
Australian Synchrotron	216	3
SPEAR3	234	3
BEPC-II	238	1.89
BESSY II	240	1.7
TPS	518	3
MAX IV 3 GeV	528	3
CESR-TA	768	1.5-6
NSLS-II	792	3
SuperKEKB	3016	4/7

- Over the last 12 years I had a pleasure of directly or indirectly participating in commissioning bunch-by-bunch feedback in 22 machines;
- A definite learning opportunity!
- Helped me gain some understanding of feedback limiting factors;
- Becoming more important in future accelerators.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Machines

Ring	C, m	E, GeV
MLS	48	0.1–0.6
HLS	66	0.8
LNLS UVX	93	0.5–1.37
MAX IV 1.5 GeV	96	1.5
DAΦNE	98	0.51
Duke SR-FEL	108	0.2-1.2
ANKA	110	0.5–2.5
DELTA	115	1.5
TLS	120	1.5
ELSA	164	1.2-3.2
Indus-2	173	0.55–2.5
Photon Factory	187	2.5
ALS	197	1.9
Australian Synchrotron	216	3
SPEAR3	234	3
BEPC-II	238	1.89
BESSY II	240	1.7
TPS	518	3
MAX IV 3 GeV	528	3
CESR-TA	768	1.5-6
NSLS-II	792	3
SuperKEKB	3016	4/7

- Over the last 12 years I had a pleasure of directly or indirectly participating in commissioning bunch-by-bunch feedback in 22 machines;
- A definite learning opportunity!
- Helped me gain some understanding of feedback limiting factors;
- Becoming more important in future accelerators.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Machines

Ring	C, m	E, GeV
MLS	48	0.1–0.6
HLS	66	0.8
LNLS UVX	93	0.5–1.37
MAX IV 1.5 GeV	96	1.5
DAΦNE	98	0.51
Duke SR-FEL	108	0.2-1.2
ANKA	110	0.5–2.5
DELTA	115	1.5
TLS	120	1.5
ELSA	164	1.2-3.2
Indus-2	173	0.55-2.5
Photon Factory	187	2.5
ALS	197	1.9
Australian Synchrotron	216	3
SPEAR3	234	3
BEPC-II	238	1.89
BESSY II	240	1.7
TPS	518	3
MAX IV 3 GeV	528	3
CESR-TA	768	1.5-6
NSLS-II	792	3
SuperKEKB	3016	4/7
oupenterto	0010	

- Over the last 12 years I had a pleasure of directly or indirectly participating in commissioning bunch-by-bunch feedback in 22 machines;
- A definite learning opportunity!
- Helped me gain some understanding of feedback limiting factors;
- Becoming more important in future accelerators.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Machines

Ring	C, m	E, GeV
MLS	48	0.1–0.6
HLS	66	0.8
LNLS UVX	93	0.5–1.37
MAX IV 1.5 GeV	96	1.5
DAΦNE	98	0.51
Duke SR-FEL	108	0.2-1.2
ANKA	110	0.5–2.5
DELTA	115	1.5
TLS	120	1.5
ELSA	164	1.2-3.2
Indus-2	173	0.55-2.5
Photon Factory	187	2.5
ALS	197	1.9
Australian Synchrotron	216	3
SPEAR3	234	3
BEPC-II	238	1.89
BESSY II	240	1.7
TPS	518	3
MAX IV 3 GeV	528	3
CESR-TA	768	1.5-6
NSLS-II	792	3
SuperKEKB	3016	4/7
Oupenterto	0010	-, /

- Over the last 12 years I had a pleasure of directly or indirectly participating in commissioning bunch-by-bunch feedback in 22 machines;
- A definite learning opportunity!
- Helped me gain some understanding of feedback limiting factors;
- Becoming more important in future accelerators.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Focusing on electron/positron machines here;

- Consider a single bunch in a storage ring;
- Centroid motion has damped harmonic oscillator dynamics;
- Multiple bunches couple via wakefields (impedances in the frequency domain);
- At high beam currents this coupling leads to instabilities;
- Active feedback is used to suppress such instabilities above the threshold.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback

Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- Focusing on electron/positron machines here;
- Consider a single bunch in a storage ring;
- Centroid motion has damped harmonic oscillator dynamics;
- Multiple bunches couple via wakefields (impedances in the frequency domain);
- At high beam currents this coupling leads to instabilities;
- Active feedback is used to suppress such instabilities above the threshold.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback

Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- Focusing on electron/positron machines here;
- Consider a single bunch in a storage ring;
- Centroid motion has damped harmonic oscillator dynamics;
- Multiple bunches couple via wakefields (impedances in the frequency domain);
- At high beam currents this coupling leads to instabilities;
- Active feedback is used to suppress such instabilities above the threshold.

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback

Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- Focusing on electron/positron machines here;
- Consider a single bunch in a storage ring;
- Centroid motion has damped harmonic oscillator dynamics;
- Multiple bunches couple via wakefields (impedances in the frequency domain);
- At high beam currents this coupling leads to instabilities;
- Active feedback is used to suppress such instabilities above the threshold.

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback

Beam and feedback models Technology

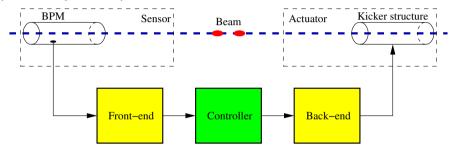
Feedback Design Process Loop Gain Residual Motion

- Focusing on electron/positron machines here;
- Consider a single bunch in a storage ring;
- Centroid motion has damped harmonic oscillator dynamics;
- Multiple bunches couple via wakefields (impedances in the frequency domain);
- At high beam currents this coupling leads to instabilities;
- Active feedback is used to suppress such instabilities above the threshold.

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback


Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Bunch-by-bunch Feedback

Definition

In bunch-by-bunch feedback approach the actuator signal for a given bunch depends only on the past motion of that bunch.

- Bunches are processed sequentially;
- Correction kicks are applied one or more turns later;
- Diagonal feedback computationally efficient;
- Extremely popular in storage rings well understood.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback

Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Conventional Topology — Applicability

- Conventional topology:
 - Single pickup;
 - Single kicker;
 - Purely bunch-by-bunch processing.
- Good performance for moderate growth times (above 20 turns);
- Reduced damping rates for betatron tunes near half integer;
- Sensitivity limits for very small beams.

Feedback System Specifications

Introduction

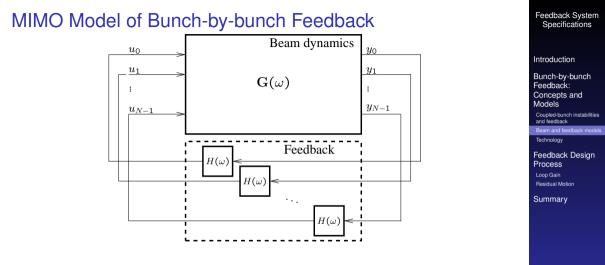
Bunch-by-bunch Feedback: Concepts and Models

Coupled-bunch instabilities and feedback

Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

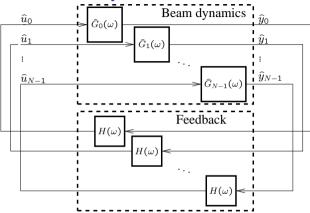
Coupled-bunch Instabilities: Eigenmodes and Eigenvalues


- If we consider bunches as coupled harmonic oscillators, a system of N bunches has N eigenmodes;
- Without the wakefields these modes have identical eigenvalues determined by the tune and the radiation damping;
- Impedances shift the modal eigenvalues in both real part (damping rate) and imaginary part (oscillation frequency);
- For an even fill pattern the eigenmodes are at the synchrotron or betatron sidebands of revolution harmonics from DC to $f_{\rm RF}/2$.

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback

Beam and feedback mode Technology


Feedback Design Process Loop Gain Residual Motion

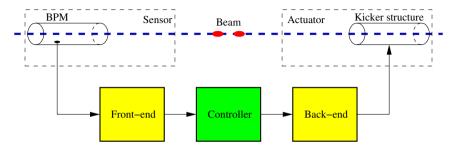
▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

- N bunch positions and feedback kicks;
- Diagonal feedback matrix $H(\omega)$ I;
- Invariant under coordinate transformations.

MIMO Model of Bunch-by-bunch Feedback

- Coordinate transformation to eigenmode basis;
- N feedback loops one per mode;
- Identical feedback applied to each mode.

Feedback System Specifications


Introduction

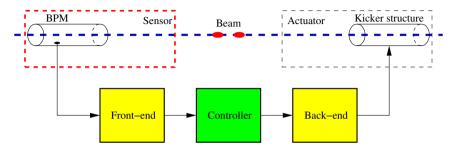
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback

Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).


Feedback System Specifications

Introduction

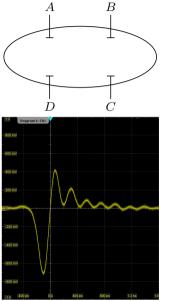
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Feedback Design Process Loop Gain Besidual Motion

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback System Specifications


Introduction

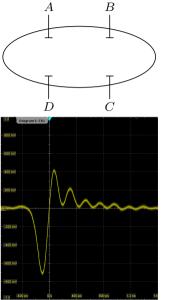
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Feedback Design Process Loop Gain Residual Motion

Summary

・ロト・国ト・ヨト ヨー うへの

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.


Feedback System Specifications

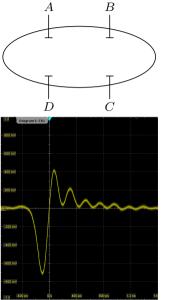
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.


Feedback System Specifications

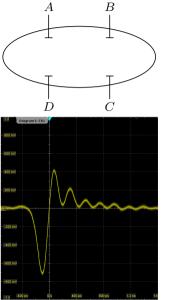
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.


Feedback System Specifications

Introduction

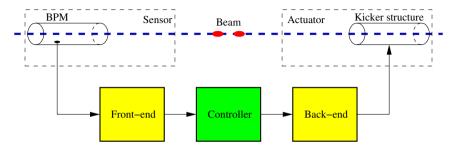
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion

- To sense beam position we typically use capacitive button beam position monitors (BPMs);
- Buttons couple capacitively to the beam, differentiating bunch current shape;
- BPM signals are wideband differentiated pulses with 100–400 ps duration;
- Differentiation means sensor gain increases with frequency.

Feedback System Specifications


Introduction

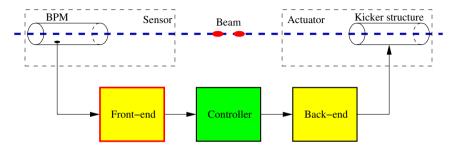
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).


Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Feedback Design Process Loop Gain Residual Motion

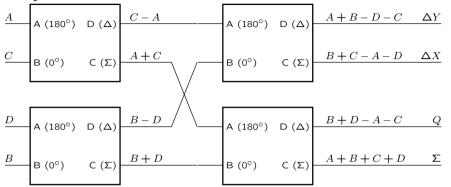
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models


Technology

Feedback Design Process Loop Gain Residual Motion

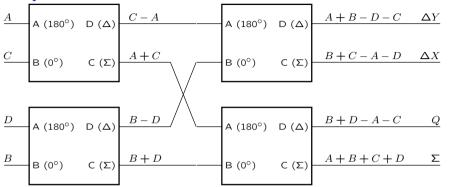
Summary

▲□▶▲□▶▲目▶▲目▶ 目 のへぐ

BPM Hybrid Network

First stage of BPM signal processing — separating X/Y/Z signals;

- Since we are digitizing in the end, why not digitize raw signals?
- ▶ For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.


Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

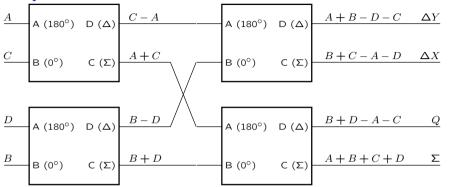
Feedback Design Process Loop Gain Residual Motion

BPM Hybrid Network

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology


Feedback Design Process Loop Gain Residual Motion

Summary

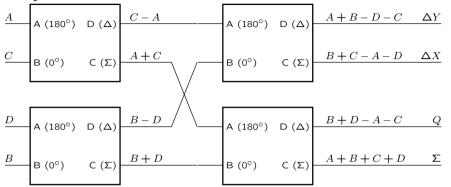
▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

- First stage of BPM signal processing separating X/Y/Z signals;
- Since we are digitizing in the end, why not digitize raw signals?
- ► For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

BPM Hybrid Network

Introduction

Feedback System

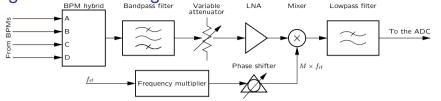

Specifications

Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- First stage of BPM signal processing separating X/Y/Z signals;
- Since we are digitizing in the end, why not digitize raw signals?
- ► For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

BPM Hybrid Network


Feedback System Specifications

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

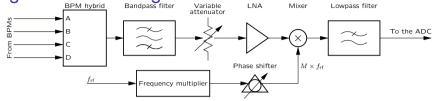
Feedback Design Process Loop Gain Residual Motion

- First stage of BPM signal processing separating X/Y/Z signals;
- Since we are digitizing in the end, why not digitize raw signals?
- ► For X and Y we are dealing with small differences of large signals;
- If we can reject the common-mode at 20–30 dB level, that is also the gain of low-noise amplifier we can use to improve sensitivity.

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

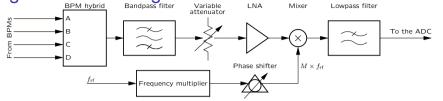
lecinology

Feedback Design Process Loop Gain Residual Motion

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

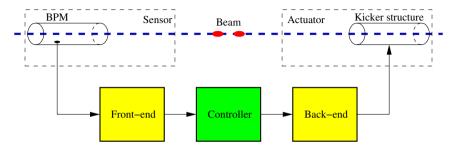
Feedback Design

Loop Gain Residual Motion

Analog Front-end Design

- Front-end requirements:
 - Low amplitude and phase noise;
 - Wideband to ensure high isolation between neighboring bunches.
- Input bandpass filter is an analog FIR filter that replicates BPM pulse with spacing, matched to detection LO period;
- Detection frequency choice:
 - High frequencies for sensitivity;
 - Must stay below the propagation cut-off frequency of the vacuum chamber.
- Local oscillator adjusted for amplitude (transverse) or phase (longitudinal) detection.

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

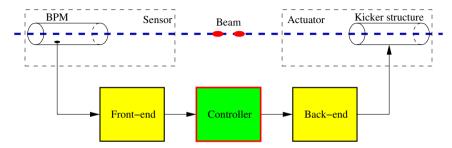
Feedback Design Process Loop Gain Residual Motion

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback System Specifications

Introduction


Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion

Summary

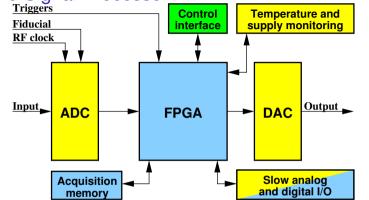
Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

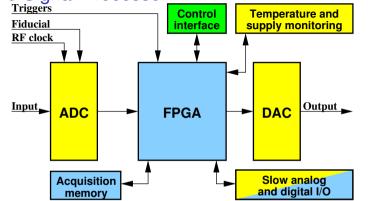

Foodback [

Feedback Design Process Loop Gain Residual Motion

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ● ●

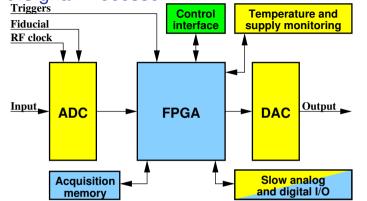
Baseband Signal Processor



Feedback System Specifications Introduction Bunch-by-bunch Feedback: Concepts and Models Coupled bunch instabilities and feedback Beam and feedback models Technology Feedback Design Process Loop Gain

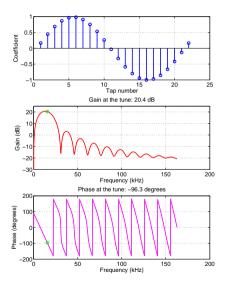
Residual Motion

- Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;
- ADC, DAC: 12–14 bit, 500–600 MSPS, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.


Baseband Signal Processor

Feedback System Specifications Introduction Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Feedback Design Process Loop Gain Residual Motion

- Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;
- ADC, DAC: 12–14 bit, 500–600 MSPS, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.


Baseband Signal Processor

Feedback System Specifications Introduction Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Feedback Design Process Loop Gain Residual Motion

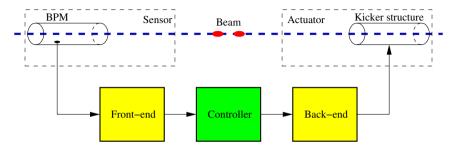
- Block diagram of a type frequently seen in accelerator context: ADC, FPGA, and DAC;
- ADC, DAC: 12–14 bit, 500–600 MSPS, 400 ps rise/fall times;
- FPGA implements algorithmically simple, but computationally intensive processing.

Feedback Filter

Requirements:

- Adjustable phase shift at the tune frequency;
- DC rejection to get rid of constant orbit offsets;
- Low group delay.
- Filter design approach sample one period of a sine wave at tune frequency;
 - Group delay is $\frac{1}{2}$ of oscillation period;
 - Nicely parameterized, often close to optimal.
- More sophisticated design methods are required when large perturbations are present or with variable beam dynamics, etc.

Feedback System Specifications


Introduction

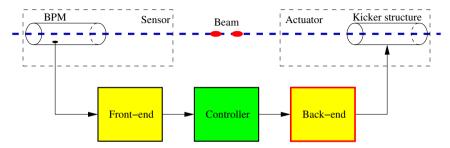
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback models Beam and feedback models

rechnology

Feedback Design Process Loop Gain Residual Motion

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

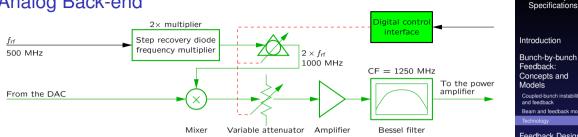

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Feedback Design Process Loop Gain Residual Motion

Bunch-by-bunch Feedback

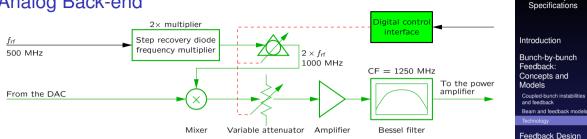

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

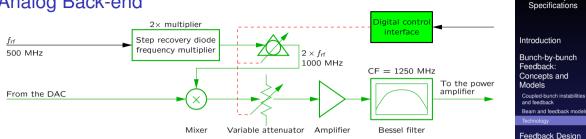
Feedback Design Process Loop Gain Residual Motion



- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1-1.5 GHz:

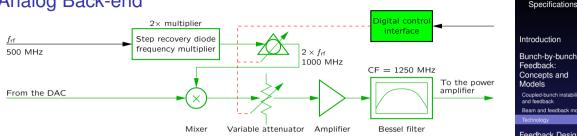
- ▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Coupled-bunch instabilities Beam and feedback models Feedback Design Process Loop Gain Residual Motion


Feedback System

Feedback System

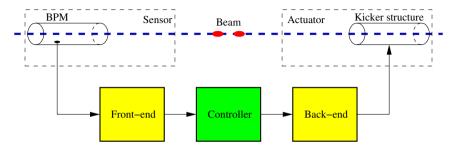
Process Loop Gain Residual Motion


- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1-1.5 GHz:
- Baseband kick must be upconverted to the right frequency to drive these:
- ▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Feedback System

Process Loop Gain Residual Motion

- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1-1.5 GHz:
- Baseband kick must be upconverted to the right frequency to drive these:
- Phase linearity is critical to maintain the same feedback for different modes:
- ▲□▶▲□▶▲글▶▲글▶ 글 りゅつ



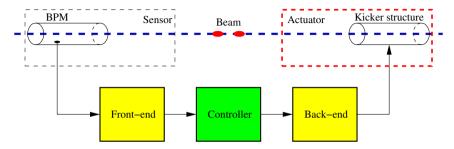
- Longitudinal kickers are usually built as highly damped (low Q, wideband) cavities at 1-1.5 GHz:
- Baseband kick must be upconverted to the right frequency to drive these:
- Phase linearity is critical to maintain the same feedback for different modes:
- Constant group-delay filters are used to create single-sideband modulation to efficiently drive kicker cavity. ▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Coupled-bunch instabilities Beam and feedback models Feedback Design Process Loop Gain Residual Motion Summarv

Feedback System

Bunch-by-bunch Feedback

- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

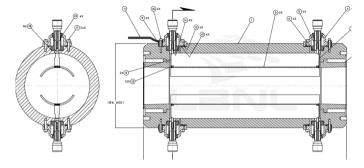

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Feedback Design Process Loop Gain Besidual Motion

Bunch-by-bunch Feedback


- Sensor (pickup);
- Analog front-end;
- Controller;
- Analog back-end;
- Actuator (kicker).

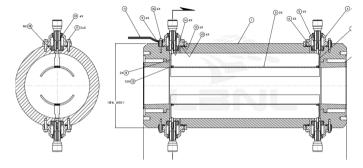
Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Feedback Design Process Loop Gain Besidual Motion

- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
- Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines provide better isolation, lower shunt impedance.


Feedback System Specifications

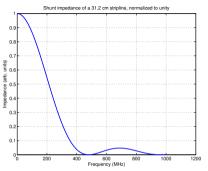
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion

- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
- Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines provide better isolation, lower shunt impedance.

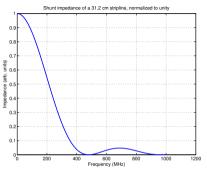

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technolog

Feedback Design Process Loop Gain Residual Motion



- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
- Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines provide better isolation, lower shunt impedance.

Feedback System Specifications Introduction Bunch-by-bunch

Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

- 50 Ω striplines driven differentially;
- Counter-propagating beam and kick signals;
- For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:
 - Fill time of 1 ns;
 - Beam propagation time of 1 ns;
- Longer striplines will couple the kick to neighboring bunches.
- Shorter striplines provide better isolation, lower shunt impedance.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models

Technology

Feedback Design Process Loop Gain Residual Motion

- For a given fractional tune and pickup/kicker placement there is a maximum instability growth rate that can be stabilized;
- ► If your expected growth rate is faster, a different approach is needed:
 - Reduce impedances;
 - Move pickup/kicker, adjust tunes;
 - Change feedback topology.
- Determine the minimum required loop gain to get closed-loop damping rate equal to the open-loop growth rate;
- Once the gain is defined, required maximum kick angle can be computed based on the expected perturbations;
- Maximum kick angle determines the actuator setup amplifier power, kicker shunt impedance, number of kickers.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- For a given fractional tune and pickup/kicker placement there is a maximum instability growth rate that can be stabilized;
- If your expected growth rate is faster, a different approach is needed:
 - Reduce impedances;
 - Move pickup/kicker, adjust tunes;
 - Change feedback topology.
- Determine the minimum required loop gain to get closed-loop damping rate equal to the open-loop growth rate;
- Once the gain is defined, required maximum kick angle can be computed based on the expected perturbations;
- Maximum kick angle determines the actuator setup amplifier power, kicker shunt impedance, number of kickers.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- For a given fractional tune and pickup/kicker placement there is a maximum instability growth rate that can be stabilized;
- If your expected growth rate is faster, a different approach is needed:
 - Reduce impedances;
 - Move pickup/kicker, adjust tunes;
 - Change feedback topology.
- Determine the minimum required loop gain to get closed-loop damping rate equal to the open-loop growth rate;
- Once the gain is defined, required maximum kick angle can be computed based on the expected perturbations;
- Maximum kick angle determines the actuator setup amplifier power, kicker shunt impedance, number of kickers.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion

- For a given fractional tune and pickup/kicker placement there is a maximum instability growth rate that can be stabilized;
- If your expected growth rate is faster, a different approach is needed:
 - Reduce impedances;
 - Move pickup/kicker, adjust tunes;
 - Change feedback topology.
- Determine the minimum required loop gain to get closed-loop damping rate equal to the open-loop growth rate;
- Once the gain is defined, required maximum kick angle can be computed based on the expected perturbations;
- Maximum kick angle determines the actuator setup amplifier power, kicker shunt impedance, number of kickers.

Feedback System Specifications

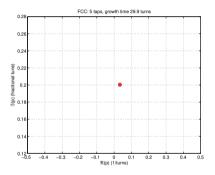
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion

- For a given fractional tune and pickup/kicker placement there is a maximum instability growth rate that can be stabilized;
- If your expected growth rate is faster, a different approach is needed:
 - Reduce impedances;
 - Move pickup/kicker, adjust tunes;
 - Change feedback topology.
- Determine the minimum required loop gain to get closed-loop damping rate equal to the open-loop growth rate;
- Once the gain is defined, required maximum kick angle can be computed based on the expected perturbations;
- Maximum kick angle determines the actuator setup amplifier power, kicker shunt impedance, number of kickers.


Feedback System Specifications

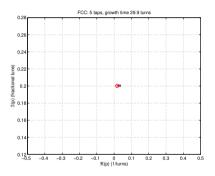
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

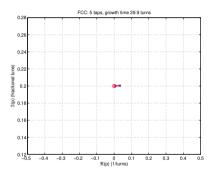

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion


- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Introduction

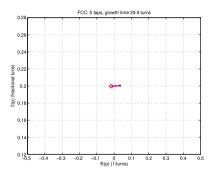
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

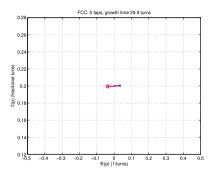
Feedback Design Process

Loop Gain Residual Motion

Hesidual Motio

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

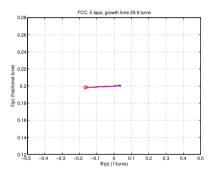
Feedback Design Process

Loop Gain Residual Motion

nesidual motio

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

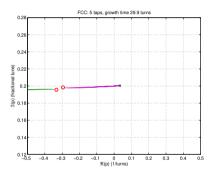
Feedback Design Process

Loop Gain Residual Motion

1001000

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

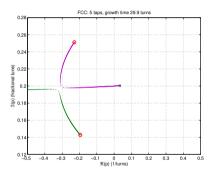
Feedback Design Process

Loop Gain Residual Motion

riesiduai motio

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

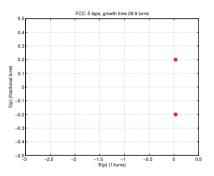
Feedback Design Process

Loop Gai

Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

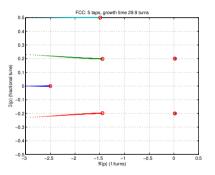
Feedback Design Process

Loop Gain

Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

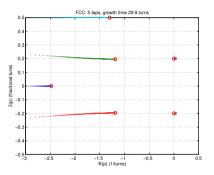
Feedback Design Process

Loop Gain

Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications

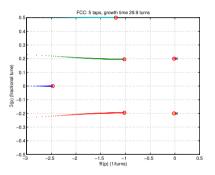

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain

Residual Motion

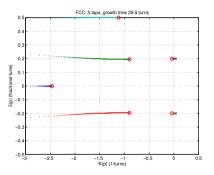

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion


- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Introduction

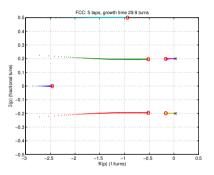
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

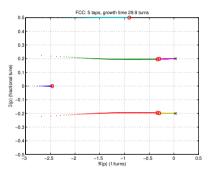
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gair

Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback models Technology

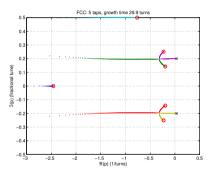
Feedback Design Process

Loop Gain

Residual Motion

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;

Feedback System Specifications


Introduction

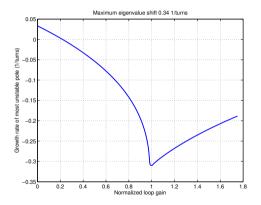
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion

Root Locus

- At zero gain we see the open-loop eigenvalue;
- With increasing gain the eigenvalue moves left, towards stability;
- At some point another eigenvalue shows up from the left — due to the delay;
- Higher gains lead to reduced damping;
- Same locus zoomed out;


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain

Residual Motion

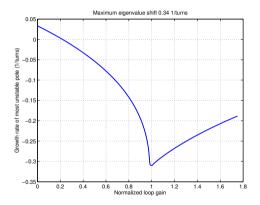
- At each gain point in the root locus we plot the real part of the rightmost (least stable) eigenvalue;
- Starts at open-loop growth rate, minimum shows achievable feedback damping rate;
- Rule of thumb closed loop damping should be at least as fast as the open-loop growth rate;
- Damping is roughly linear with gain at moderate damping rates, eigenvalue shift is

$$\lambda = g_{\rm fb} \sqrt{\beta_B \beta_K} f_{\rm rev}/2.$$

• For
$$\tau_{\rm ol} = -\tau_{\rm cl}$$
, $g_{\rm fb} = \frac{4T_{\rm rev}}{\sqrt{\beta_B\beta_K}\tau_{\rm ol}}$;

Feedback System Specifications

Introduction


Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gain Residual Motion

Summary

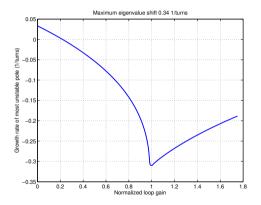
▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

- At each gain point in the root locus we plot the real part of the rightmost (least stable) eigenvalue;
- Starts at open-loop growth rate, minimum shows achievable feedback damping rate;
- Rule of thumb closed loop damping should be at least as fast as the open-loop growth rate;
- Damping is roughly linear with gain at moderate damping rates, eigenvalue shift is $\lambda = q_{\rm fb} \sqrt{\beta_B \beta_K} f_{\rm rev}/2.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• For
$$\tau_{\rm ol} = -\tau_{\rm cl}$$
, $g_{\rm fb} = \frac{4T_{\rm rev}}{\sqrt{\beta_B\beta_K\tau_{\rm ol}}}$;

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback models Technology

Feedback Design Process

Loop Gain

Residual Motion

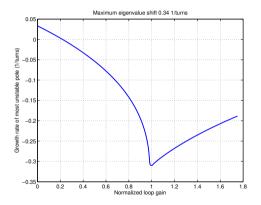
- At each gain point in the root locus we plot the real part of the rightmost (least stable) eigenvalue;
- Starts at open-loop growth rate, minimum shows achievable feedback damping rate;
- Rule of thumb closed loop damping should be at least as fast as the open-loop growth rate;
- Damping is roughly linear with gain at moderate damping rates, eigenvalue shift is

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

$$\lambda = g_{\rm fb} \sqrt{\beta_B \beta_K} f_{\rm rev}/2.$$

For $\tau_{\rm ol} = -\tau_{\rm cl}$, $g_{\rm fb} = \frac{4T_{\rm rev}}{\sqrt{\beta p \beta \kappa \tau_{\rm rel}}}$;

em


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Loop Gair

Residual Motion

- At each gain point in the root locus we plot the real part of the rightmost (least stable) eigenvalue;
- Starts at open-loop growth rate, minimum shows achievable feedback damping rate;
- Rule of thumb closed loop damping should be at least as fast as the open-loop growth rate;
- Damping is roughly linear with gain at moderate damping rates, eigenvalue shift is

$$\lambda = g_{\rm fb} \sqrt{\beta_B \beta_K} f_{\rm rev}/2.$$

• For
$$\tau_{\rm ol} = -\tau_{\rm cl}$$
, $g_{\rm fb} = \frac{4T_{\rm rev}}{\sqrt{\beta_B\beta_K}\tau_{\rm ol}}$;

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback models Technology

Feedback Design Process

Loop Gair

Residual Motion

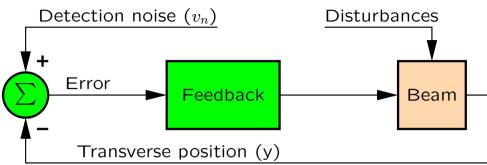
Examples of Front-End Sensitivities Achieved

Vertical Plane

Machine	Atten.	Calibration	At nominal current
SPEAR3	0 dB	0.54 counts/mA/µm	0.96 counts/µm
MAX IV 3 GeV	0 dB	0.98 counts/mA/µm	2.8 counts/µm
ASLS	2 dB	1.24 counts/mA/µm	0.83 counts/µm
NSLS-II ¹	0 dB	1.5 counts/mA/µm	$0.75 \text{ counts}/\mu m$

- LSB of the 12-bit ADC in Dimtel iGp12 is only 5 times larger than thermal noise in the ADC bandwidth (wide for good isolation down to 2 ns bunch spacing);
- Not a lot of room for improved sensitivity, need to be smart with pickup selection, feedback algorithms.

Introduction

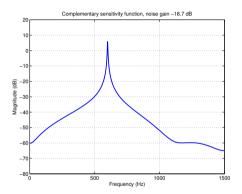

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Residual Motio

¹Older front-end design with lower sensitivity

Sensitivity and Noise


- Complementary sensitivity function T(ω) = L(ω)/(1 + L(ω)) is the transfer function between noise v_n and beam motion y;
- Assuming flat spectral density for v_n can calculate amplification or attenuation of sensing noise;
- ► Qualitatively, faster damping corresponds to wider bandwidth → higher noise sensitivity.

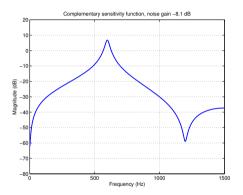
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology Feedback Design Process

Loop Gain

Residual Motior

- Growth and damping times in turns;
- $\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \, {\rm dB}$
- ▶ $\tau_{\rm ol} = \tau_{\rm cl} = 30: -8.1 \text{ dB}$
- ▶ $\tau_{\rm ol} =$ 30, $\tau_{\rm cl} =$ 3.2: -6.0 dB
- $\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$: 3.8 dB
- Fast growth rates result in higher noise sensitivity.


Feedback System Specifications

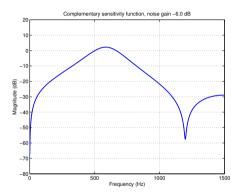
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- Growth and damping times in turns;
- $\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \, {\rm dB}$
- ► $\tau_{\rm ol} = \tau_{\rm cl} = 30$: -8.1 dB
- ▶ $\tau_{\rm ol} = 30, \, \tau_{\rm cl} = 3.2$: -6.0 dB
- ▶ $\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$: 3.8 dB
- Fast growth rates result in higher noise sensitivity.


Feedback System Specifications

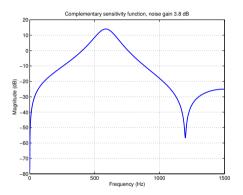
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- Growth and damping times in turns;
- $\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \, {\rm dB}$
- $\tau_{\rm ol} = \tau_{\rm cl} = 30: -8.1 \text{ dB}$
- ▶ $\tau_{\rm ol} =$ 30, $\tau_{\rm cl} =$ 3.2: -6.0 dB
- $\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$: 3.8 dB
- Fast growth rates result in higher noise sensitivity.


Feedback System Specifications

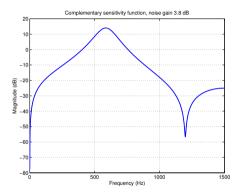
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- Growth and damping times in turns;
- $\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \text{ dB}$
- $\tau_{\rm ol} = \tau_{\rm cl} = 30: -8.1 \text{ dB}$
- ▶ $\tau_{\rm ol} =$ 30, $\tau_{\rm cl} =$ 3.2: -6.0 dB
- $\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$: 3.8 dB
- Fast growth rates result in higher noise sensitivity.


Feedback System Specifications

Introduction

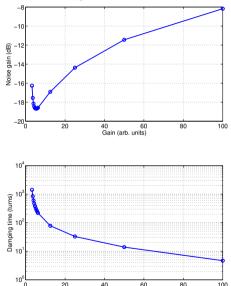
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process

Residual Motion

- Growth and damping times in turns;
- $\tau_{\rm ol} = \tau_{\rm cl} = 300: -18.7 \text{ dB}$
- $\tau_{\rm ol} = \tau_{\rm cl} = 30: -8.1 \text{ dB}$
- ▶ $\tau_{\rm ol} =$ 30, $\tau_{\rm cl} =$ 3.2: -6.0 dB
- ▶ $\tau_{\rm ol} = 5.4, \, \tau_{\rm cl} = 5.4$: 3.8 dB
- Fast growth rates result in higher noise sensitivity.

Feedback System Specifications


Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

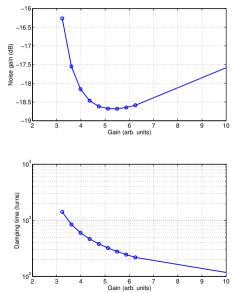
Feedback Design Process

Residual Motion

Sensitivity vs. Feedback Gain

Gain (arb. units)

- 300 turns growth time, fractional tune of 0.2, 5-turn feedback filter;
- No excitation, purely flat noise floor;
- Minimum integrated sensitivity at $\tau_{ol} = -\tau_{cl}$;
- Highly peaked *T*(ω) at low gains, very wide at high gains.


Feedback System Specifications

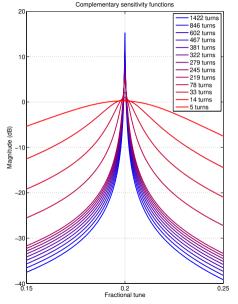
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Sensitivity vs. Feedback Gain

- 300 turns growth time, fractional tune of 0.2, 5-turn feedback filter;
- No excitation, purely flat noise floor;
- Minimum integrated sensitivity at $\tau_{\rm ol} = -\tau_{\rm cl}$;
- Highly peaked T(ω) at low gains, very wide at high gains.

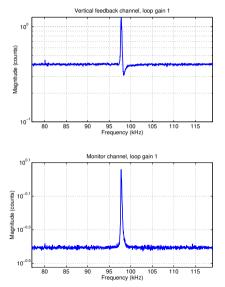

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Sensitivity vs. Feedback Gain


- 300 turns growth time, fractional tune of 0.2, 5-turn feedback filter;
- No excitation, purely flat noise floor;
- Minimum integrated sensitivity at $\tau_{\rm ol} = -\tau_{\rm cl}$;
- Highly peaked *T*(ω) at low gains, very wide at high gains.

Feedback System Specifications

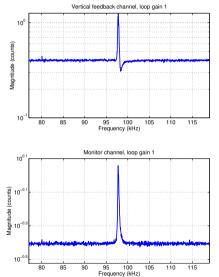
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- ► Again;
- ► Again;
- Once more;
- A wider bandwidth comparison.

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ


Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

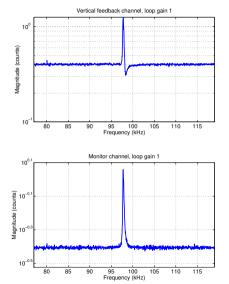
Feedback Design Process Loop Gain

Summary

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- ► Again;
- Again;
- Once more;
- A wider bandwidth comparison.

²Measurements courtesv of Weixing Cheng of NSLS-II.

Feedback System Specifications


Introduction

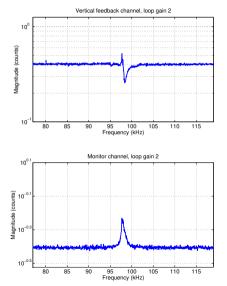
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへで

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- ► Again;
- Again;
- Once more;
- A wider bandwidth comparison.


²Measurements courtesy of Weixing Cheng of NSLS-II.

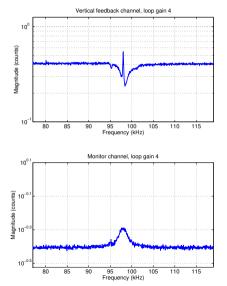
Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.


²Measurements courtesy of Weixing Cheng of NSLS-II.

Feedback System Specifications

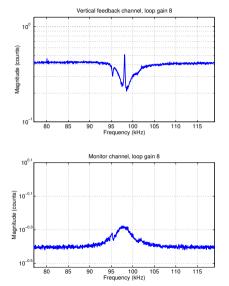
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ


²Measurements courtesy of Weixing Cheng of NSLS-II.

Feedback System Specifications

Introduction

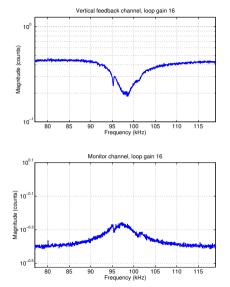
Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ

Introduction


Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback System

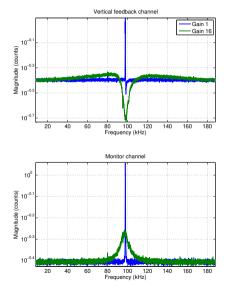
Specifications

Feedback Design Process Loop Gain

Summary

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.

▲□▶▲□▶▲글▶▲글▶ 글 りゅつ


²Measurements courtesy of Weixing Cheng of NSLS-II.

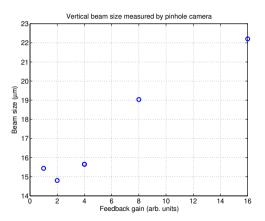
Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

- Two independent channels monitoring vertical motion, one in the feedback loop, one out of the loop;
- Roughly similar sensitivities, 250 mA in 1000 bunches;
- At low feedback gain a visible residual motion line due to ion excitation;
- Double the feedback gain;
- Again;
- Again;
- Once more;
- A wider bandwidth comparison.


Feedback System Specifications

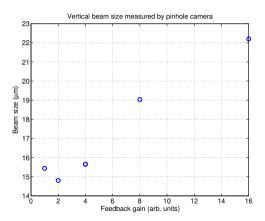
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Summary

- Vertical beam size measured by a pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Beam lifetime is correlated with beam size measurements, suggesting vertical size blow-up
- Could get a better estimate of true beam size by subtracting known dipole motion term.


Feedback System Specifications

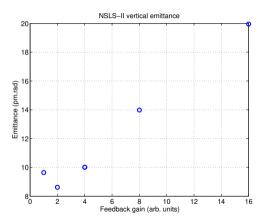
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Summary

- Vertical beam size measured by a pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Beam lifetime is correlated with beam size measurements, suggesting vertical size blow-up
- Could get a better estimate of true beam size by subtracting known dipole motion term.


Feedback System Specifications

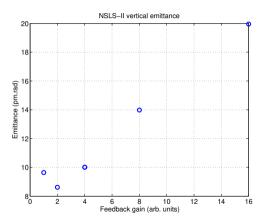
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Summary

- Vertical beam size measured by a pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Beam lifetime is correlated with beam size measurements, suggesting vertical size blow-up;
- Could get a better estimate of true beam size by subtracting known dipole motion term.


Feedback System Specifications

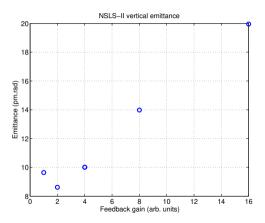
Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Summary

- Vertical beam size measured by a pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Beam lifetime is correlated with beam size measurements, suggesting vertical size blow-up;
- Could get a better estimate of true beam size by subtracting known dipole motion term.


Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain

Summary

- Vertical beam size measured by a pinhole camera;
- A superposition of true beam size and residual dipole motion;
- Vertical emittance, calculated from pinhole camera data;
- Beam lifetime is correlated with beam size measurements, suggesting vertical size blow-up;
- Could get a better estimate of true beam size by subtracting known dipole motion term.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Besidual Motion

Summary

Summary

- Bunch-by-bunch feedback has been successfully used in a large number of accelerators to control instabilities due to resistive wall, cavity HOMs, ions, and electron cloud;
- There are both theoretical and practical limits to the instabilities that can be controlled;
- High-performance robust feedback design must rely on the experience from the existing machines.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Summary

- Bunch-by-bunch feedback has been successfully used in a large number of accelerators to control instabilities due to resistive wall, cavity HOMs, ions, and electron cloud;
- There are both theoretical and practical limits to the instabilities that can be controlled;
- High-performance robust feedback design must rely on the experience from the existing machines.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion

Summary

- Bunch-by-bunch feedback has been successfully used in a large number of accelerators to control instabilities due to resistive wall, cavity HOMs, ions, and electron cloud;
- There are both theoretical and practical limits to the instabilities that can be controlled;
- High-performance robust feedback design must rely on the experience from the existing machines.

Feedback System Specifications

Introduction

Bunch-by-bunch Feedback: Concepts and Models Coupled-bunch instabilities and feedback Beam and feedback models Technology

Feedback Design Process Loop Gain Residual Motion