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Coupled-bunch Instabilities

I Instability control systems require the designers to make a large number
of choices:

I Overall topology;
I Pickups — location, requirements;
I Front end(s) — technology, limitations;
I Feedback controller;
I Back end(s) — power amplifiers, kicker design;

I This talk will attempt to reduce the search space and to simplify the
design process;

I Of course, there are limits to applicability of such simplified process —
these will be pointed out.
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Learning From Many Facilities

Machines
Ring C, m E, GeV
MLS 48 0.1–0.6
HLS 66 0.8
LNLS UVX 93 0.5–1.37
MAX IV 1.5 GeV 96 1.5
DAΦNE 98 0.51
Duke SR-FEL 108 0.2–1.2
ANKA 110 0.5–2.5
DELTA 115 1.5
TLS 120 1.5
ELSA 164 1.2–3.2
Indus-2 173 0.55–2.5
Photon Factory 187 2.5
ALS 197 1.9
Australian Synchrotron 216 3
SPEAR3 234 3
BEPC-II 238 1.89
BESSY II 240 1.7
TPS 518 3
MAX IV 3 GeV 528 3
CESR-TA 768 1.5–6
NSLS-II 792 3
SuperKEKB 3016 4/7

I Over the last 12 years I had a
pleasure of directly or indirectly
participating in commissioning
bunch-by-bunch feedback in 22
machines;

I A definite learning opportunity!
I Helped me gain some understanding

of feedback limiting factors;
I Becoming more important in future

accelerators.
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Coupled-bunch Instabilities

I Focusing on electron/positron machines here;
I Consider a single bunch in a storage ring;
I Centroid motion has damped harmonic oscillator dynamics;
I Multiple bunches couple via wakefields (impedances in the frequency

domain);
I At high beam currents this coupling leads to instabilities;
I Active feedback is used to suppress such instabilities above the

threshold.
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Bunch-by-bunch Feedback
Definition
In bunch-by-bunch feedback approach the actuator signal for a given bunch
depends only on the past motion of that bunch.

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

I Bunches are processed sequentially;
I Correction kicks are applied one or more turns later;
I Diagonal feedback — computationally efficient;
I Extremely popular in storage rings — well understood.
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Conventional Topology — Applicability

I Conventional topology:
I Single pickup;
I Single kicker;
I Purely bunch-by-bunch processing.

I Good performance for moderate growth times (above 20 turns);
I Reduced damping rates for betatron tunes near half integer;
I Sensitivity limits for very small beams.
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Coupled-bunch Instabilities: Eigenmodes and Eigenvalues

I If we consider bunches as coupled harmonic oscillators, a system of N
bunches has N eigenmodes;

I Without the wakefields these modes have identical eigenvalues
determined by the tune and the radiation damping;

I Impedances shift the modal eigenvalues in both real part (damping rate)
and imaginary part (oscillation frequency);

I For an even fill pattern the eigenmodes are at the synchrotron or
betatron sidebands of revolution harmonics from DC to fRF/2.
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

y0

y1

yN−1

...

u0

u1

uN−1

... G(ω)

I N bunch positions and feedback kicks;
I Diagonal feedback matrix H(ω)I;
I Invariant under coordinate transformations.
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MIMO Model of Bunch-by-bunch Feedback

Feedback

Beam dynamics

H(ω)

H(ω)

H(ω)

. . .

ŷ0

ŷ1

ŷN−1

...

û0

û1

ûN−1

... . . .

Ĝ1(ω)

Ĝ0(ω)

ĜN−1(ω)

I Coordinate transformation to eigenmode basis;
I N feedback loops - one per mode;
I Identical feedback applied to each mode.
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Bunch-by-bunch Feedback

Controller

Beam
Kicker structure

Back−endFront−end

SensorBPM Actuator

I Sensor (pickup);
I Analog front-end;
I Controller;
I Analog back-end;
I Actuator (kicker).
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Beam Position Sensor
A

C

B

D

I To sense beam position we typically use
capacitive button beam position monitors
(BPMs);

I Buttons couple capacitively to the beam,
differentiating bunch current shape;

I BPM signals are wideband differentiated
pulses with 100–400 ps duration;

I Differentiation means sensor gain increases
with frequency.
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BPM Hybrid Network
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A+B + C +D

A+B −D − C ∆Y

∆X

Σ

Q

A+ C

B +D

B −D

C −AA

C

B

D

I First stage of BPM signal processing — separating X/Y/Z signals;
I Since we are digitizing in the end, why not digitize raw signals?
I For X and Y we are dealing with small differences of large signals;
I If we can reject the common-mode at 20–30 dB level, that is also the

gain of low-noise amplifier we can use to improve sensitivity.



Feedback System
Specifications

Introduction

Bunch-by-bunch
Feedback:
Concepts and
Models
Coupled-bunch instabilities
and feedback

Beam and feedback models

Technology

Feedback Design
Process
Loop Gain

Residual Motion

Summary

BPM Hybrid Network

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

B + C − A−D

B +D − A− C

A+B + C +D

A+B −D − C ∆Y

∆X

Σ

Q

A+ C

B +D

B −D

C −AA

C

B

D

I First stage of BPM signal processing — separating X/Y/Z signals;
I Since we are digitizing in the end, why not digitize raw signals?
I For X and Y we are dealing with small differences of large signals;
I If we can reject the common-mode at 20–30 dB level, that is also the

gain of low-noise amplifier we can use to improve sensitivity.



Feedback System
Specifications

Introduction

Bunch-by-bunch
Feedback:
Concepts and
Models
Coupled-bunch instabilities
and feedback

Beam and feedback models

Technology

Feedback Design
Process
Loop Gain

Residual Motion

Summary

BPM Hybrid Network

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

B + C − A−D

B +D − A− C

A+B + C +D

A+B −D − C ∆Y

∆X

Σ

Q

A+ C

B +D

B −D

C −AA

C

B

D

I First stage of BPM signal processing — separating X/Y/Z signals;
I Since we are digitizing in the end, why not digitize raw signals?
I For X and Y we are dealing with small differences of large signals;
I If we can reject the common-mode at 20–30 dB level, that is also the

gain of low-noise amplifier we can use to improve sensitivity.



Feedback System
Specifications

Introduction

Bunch-by-bunch
Feedback:
Concepts and
Models
Coupled-bunch instabilities
and feedback

Beam and feedback models

Technology

Feedback Design
Process
Loop Gain

Residual Motion

Summary

BPM Hybrid Network

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

A (180◦)

B (0◦) C (Σ)

D (∆)

B + C − A−D

B +D − A− C

A+B + C +D

A+B −D − C ∆Y

∆X

Σ

Q

A+ C

B +D

B −D

C −AA

C

B

D

I First stage of BPM signal processing — separating X/Y/Z signals;
I Since we are digitizing in the end, why not digitize raw signals?
I For X and Y we are dealing with small differences of large signals;
I If we can reject the common-mode at 20–30 dB level, that is also the

gain of low-noise amplifier we can use to improve sensitivity.



Feedback System
Specifications

Introduction

Bunch-by-bunch
Feedback:
Concepts and
Models
Coupled-bunch instabilities
and feedback

Beam and feedback models

Technology

Feedback Design
Process
Loop Gain

Residual Motion

Summary

Analog Front-end Design

D

C

B

A

BPM hybrid

F
ro

m
B
P
M

s
×

Variable
attenuator

Phase shifter

Frequency multiplier
frf

Bandpass filter

M × frf

Lowpass filter

To the ADC

MixerLNA

I Front-end requirements:
I Low amplitude and phase noise;
I Wideband to ensure high isolation between neighboring bunches.

I Input bandpass filter is an analog FIR filter that replicates BPM pulse
with spacing, matched to detection LO period;

I Detection frequency choice:
I High frequencies for sensitivity;
I Must stay below the propagation cut-off frequency of the vacuum

chamber.
I Local oscillator adjusted for amplitude (transverse) or phase

(longitudinal) detection.
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I Analog front-end;
I Controller;
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I Actuator (kicker).
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Baseband Signal Processor

ADC

Acquisition
memory

supply monitoring
Temperature and

Input

interface

Output

RF clock

DACFPGA

Fiducial

Triggers

and digital I/O
Slow analog

Control

I Block diagram of a type frequently seen in accelerator context: ADC,
FPGA, and DAC;

I ADC, DAC: 12–14 bit, 500–600 MSPS, 400 ps rise/fall times;
I FPGA implements algorithmically simple, but computationally intensive

processing.
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I Requirements:
I Adjustable phase shift at the tune

frequency;
I DC rejection to get rid of constant orbit

offsets;
I Low group delay.

I Filter design approach — sample one
period of a sine wave at tune
frequency;

I Group delay is 1
2 of oscillation period;

I Nicely parameterized, often close to
optimal.

I More sophisticated design methods are
required when large perturbations are
present or with variable beam
dynamics, etc.
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I Controller;
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I Actuator (kicker).
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Analog Back-end

amplifier
To the power

Bessel filterAmplifierVariable attenuatorMixer

×

2× multiplier

Step recovery diode
frequency multiplier

From the DAC

Digital control
interface

frf

500 MHz 2× frf
1000 MHz

CF = 1250 MHz

I Longitudinal kickers are usually built as highly damped (low Q,
wideband) cavities at 1–1.5 GHz;

I Baseband kick must be upconverted to the right frequency to drive
these;

I Phase linearity is critical to maintain the same feedback for different
modes;

I Constant group-delay filters are used to create single-sideband
modulation to efficiently drive kicker cavity.
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Transverse Kicker

I 50 Ω striplines driven differentially;
I Counter-propagating beam and kick signals;
I For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:

I Fill time of 1 ns;
I Beam propagation time of 1 ns;

I Longer striplines will couple the kick to neighboring bunches.
I Shorter striplines provide better isolation, lower shunt impedance.
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I 50 Ω striplines driven differentially;
I Counter-propagating beam and kick signals;
I For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:

I Fill time of 1 ns;
I Beam propagation time of 1 ns;

I Longer striplines will couple the kick to neighboring bunches.
I Shorter striplines provide better isolation, lower shunt impedance.
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I 50 Ω striplines driven differentially;
I Counter-propagating beam and kick signals;
I For 2 ns bunch spacing maximum/optimal stripline length is 1 ns:

I Fill time of 1 ns;
I Beam propagation time of 1 ns;

I Longer striplines will couple the kick to neighboring bunches.
I Shorter striplines provide better isolation, lower shunt impedance.
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Design Procedure

I For a given fractional tune and pickup/kicker placement there is a
maximum instability growth rate that can be stabilized;

I If your expected growth rate is faster, a different approach is needed:
I Reduce impedances;
I Move pickup/kicker, adjust tunes;
I Change feedback topology.

I Determine the minimum required loop gain — to get closed-loop
damping rate equal to the open-loop growth rate;

I Once the gain is defined, required maximum kick angle can be
computed based on the expected perturbations;

I Maximum kick angle determines the actuator setup — amplifier power,
kicker shunt impedance, number of kickers.
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Root Locus
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FCC: 5 taps, growth time 29.9 turns

I At zero gain we see the open-loop
eigenvalue;

I With increasing gain the eigenvalue
moves left, towards stability;

I At some point another eigenvalue shows
up from the left — due to the delay;

I Higher gains lead to reduced damping;
I Same locus zoomed out;
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eigenvalue;

I With increasing gain the eigenvalue
moves left, towards stability;

I At some point another eigenvalue shows
up from the left — due to the delay;

I Higher gains lead to reduced damping;
I Same locus zoomed out;
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Maximum eigenvalue shift 0.34 1/turns

I At each gain point in the root locus
we plot the real part of the
rightmost (least stable) eigenvalue;

I Starts at open-loop growth rate,
minimum shows achievable
feedback damping rate;

I Rule of thumb — closed loop
damping should be at least as fast
as the open-loop growth rate;

I Damping is roughly linear with gain
at moderate damping rates,
eigenvalue shift is
λ = gfb

√
βBβK frev/2.

I For τol = −τcl, gfb = 4Trev√
βBβK τol

;
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minimum shows achievable
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Examples of Front-End Sensitivities Achieved

Vertical Plane

Machine Atten. Calibration At nominal current
SPEAR3 0 dB 0.54 counts/mA/µm 0.96 counts/µm
MAX IV 3 GeV 0 dB 0.98 counts/mA/µm 2.8 counts/µm
ASLS 2 dB 1.24 counts/mA/µm 0.83 counts/µm
NSLS-II1 0 dB 1.5 counts/mA/µm 0.75 counts/µm

I LSB of the 12-bit ADC in Dimtel iGp12 is only 5 times larger than
thermal noise in the ADC bandwidth (wide for good isolation down to
2 ns bunch spacing);

I Not a lot of room for improved sensitivity, need to be smart with pickup
selection, feedback algorithms.

1Older front-end design with lower sensitivity
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Sensitivity and Noise

∑ Error

Transverse position (y)

Disturbances

Feedback Beam

Detection noise (vn)

I Complementary sensitivity function T (ω) = L(ω)/(1 + L(ω)) is the
transfer function between noise vn and beam motion y ;

I Assuming flat spectral density for vn can calculate amplification or
attenuation of sensing noise;

I Qualitatively, faster damping corresponds to wider bandwidth→ higher
noise sensitivity.
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Complementary sensitivity function, noise gain −18.7 dB

I Growth and damping times in turns;
I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I Fast growth rates result in higher

noise sensitivity.
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Complementary sensitivity function, noise gain −8.1 dB

I Growth and damping times in turns;
I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I Fast growth rates result in higher

noise sensitivity.
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Complementary sensitivity function, noise gain −6.0 dB

I Growth and damping times in turns;
I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I Fast growth rates result in higher

noise sensitivity.
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Complementary sensitivity function, noise gain 3.8 dB

I Growth and damping times in turns;
I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I Fast growth rates result in higher

noise sensitivity.
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I Growth and damping times in turns;
I τol = τcl = 300: −18.7 dB
I τol = τcl = 30: −8.1 dB
I τol = 30, τcl = 3.2: −6.0 dB
I τol = 5.4, τcl = 5.4: 3.8 dB
I Fast growth rates result in higher

noise sensitivity.
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Sensitivity vs. Feedback Gain
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I 300 turns growth time, fractional
tune of 0.2, 5-turn feedback filter;

I No excitation, purely flat noise floor;
I Minimum integrated sensitivity at
τol = −τcl;

I Highly peaked T (ω) at low gains,
very wide at high gains.
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I 300 turns growth time, fractional
tune of 0.2, 5-turn feedback filter;

I No excitation, purely flat noise floor;
I Minimum integrated sensitivity at
τol = −τcl;

I Highly peaked T (ω) at low gains,
very wide at high gains.
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I 300 turns growth time, fractional
tune of 0.2, 5-turn feedback filter;

I No excitation, purely flat noise floor;
I Minimum integrated sensitivity at
τol = −τcl;

I Highly peaked T (ω) at low gains,
very wide at high gains.
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NSLS-II: Averaged Bunch Spectra vs. Feedback Gain 2
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Vertical feedback channel, loop gain 1
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Monitor channel, loop gain 1

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.



Feedback System
Specifications

Introduction

Bunch-by-bunch
Feedback:
Concepts and
Models
Coupled-bunch instabilities
and feedback

Beam and feedback models

Technology

Feedback Design
Process
Loop Gain

Residual Motion

Summary

NSLS-II: Averaged Bunch Spectra vs. Feedback Gain 2
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Monitor channel, loop gain 1

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Monitor channel, loop gain 1

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 2
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Monitor channel, loop gain 2

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 4
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Monitor channel, loop gain 4

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 8
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Monitor channel, loop gain 8

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Vertical feedback channel, loop gain 16
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Monitor channel, loop gain 16

I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Gain 16 I Two independent channels monitoring
vertical motion, one in the feedback
loop, one out of the loop;

I Roughly similar sensitivities, 250 mA in
1000 bunches;

I At low feedback gain a visible residual
motion line due to ion excitation;

I Double the feedback gain;
I Again;
I Again;
I Once more;
I A wider bandwidth comparison.

2Measurements courtesy of Weixing Cheng of NSLS-II.
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Beam Size vs. Feedback Gain 3
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Vertical beam size measured by pinhole camera
I Vertical beam size measured by

a pinhole camera;
I A superposition of true beam size

and residual dipole motion;
I Vertical emittance, calculated

from pinhole camera data;
I Beam lifetime is correlated with

beam size measurements,
suggesting vertical size blow-up;

I Could get a better estimate of
true beam size by subtracting
known dipole motion term.

3Measurements courtesy of Weixing Cheng of NSLS-II.
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NSLS−II vertical emittance
I Vertical beam size measured by

a pinhole camera;
I A superposition of true beam size

and residual dipole motion;
I Vertical emittance, calculated

from pinhole camera data;
I Beam lifetime is correlated with

beam size measurements,
suggesting vertical size blow-up;

I Could get a better estimate of
true beam size by subtracting
known dipole motion term.
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NSLS−II vertical emittance
I Vertical beam size measured by

a pinhole camera;
I A superposition of true beam size

and residual dipole motion;
I Vertical emittance, calculated

from pinhole camera data;
I Beam lifetime is correlated with

beam size measurements,
suggesting vertical size blow-up;

I Could get a better estimate of
true beam size by subtracting
known dipole motion term.

3Measurements courtesy of Weixing Cheng of NSLS-II.
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I Bunch-by-bunch feedback has been successfully used in a large
number of accelerators to control instabilities due to resistive wall, cavity
HOMs, ions, and electron cloud;

I There are both theoretical and practical limits to the instabilities that can
be controlled;

I High-performance robust feedback design must rely on the experience
from the existing machines.
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