Magnetized dynamic friction for times short compared to the plasma period

Ilya Pogorelov, David Bruhwiler,

Dan T. Abell, Yury Eidelman & Stephen Webb

JLEIC Collaboration Meeting Spring 2019

2 April 2019 – JLab, Newport News, VA

This work is supported by the US DOE, Office of Science, Office of Nuclear Physics, under Award # DE-SC0015212.

Outline

- Parameter regime for relativistic electron coolers
- Details of the calculation
- Preliminary results
- Comparison with other models
- Future work

Relativistic cooling → short interaction time

• Prototyping is done in the parameter regime of Fedotov *et al.* (2006)

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 9, 074401 (2006)

Numerical study of the magnetized friction force

A. V. Fedotov, D. L. Bruhwiler, A. O. Sidorin, D. T. Abell, I. Ben-Zvi, R. Busby, J. R. Cary, 4 and V. N. Litvinenko Brookhaven National Laboratory, Upton, New York 11973, USA

Tech-X, Boulder, Colorado 80303, USA

JINR, Dubna, Russia

4University of Colorado, Boulder, Colorado 80309, USA
(Received 14 November 2005; published 7 July 2006)

Proceedings of HB2006, Tsukuba, Japan

Analysis of the magnetized friction force *

A.V. Fedotov [†], BNL, Upton, NY 11973, USA D.L. Bruhwiler, Tech-X, Boulder, CO 80303, USA A.O. Sidorin, JINR, Dubna, Russia

- For testing, we considered the following beam frame parameters:
 - $-e^{-}$ density, $n_e = 2x10^{15} \text{ m}^{-3}$
 - ideal solenoid, B = 5 T
 - interaction time, $\tau_{int} = 4x10^{-10} \text{ s} \sim 56 \text{ T}_L \sim 0.16 \text{ T}_{pl}$
 - 16% of a plasma period → no shielding of the interaction
 - distance to nearest e^- , $r_1 \sim 4.9 \times 10^{-6}$ m ~ 10 r_L
 - small Larmor radius → strong B-field assumption is reasonable

Our approach is motivated by the work of *Ya. Derbenev*

THEORY OF ELECTRON COOLING

Ya. Derbenev, "Theory of Electron Cooling," arXiv (2017); https://arxiv.org/abs/1703.09735

Yaroslav Derbenev*

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

- The E-fields associated with friction must be carefully identified
 - these are the fields generated by the presence of the ion

bulk fields

friction

statistical fluctuations

$$\vec{E}(\vec{r}, \vec{v}, t) = \langle \vec{E}^0 \rangle (\vec{r}, t) + \langle \Delta \vec{E} \rangle (\vec{r}, \vec{v}, t) + \vec{E}^{fl}(\vec{r}, \vec{v}, t)$$
(1.1)

Friction force must be calculated along the ion trajectory:

$$\vec{F} = -ze\langle\Delta\vec{E}\rangle(\vec{r},\vec{v},t)\big|_{\vec{r}=\vec{r}(t),\vec{\dot{r}}(t)=\vec{v}}$$
(1.2)

- we do this numerically for each individual ion-electron interaction
 - total force obtained by summing over e⁻ distribution (i.e. no shielding)
- bulk forces are removed by subtracting force from unperturbed e-'s

Gyrokinetic averaging yields 1D e⁻ oscillations

- Hamiltonian perturbation theory for single ion & e-
 - unperturbed motion: drifting ion and magnetized e
 - primary assumption: D (impact parameter) >> r_L (Larmor radius)
 - longitudinal dynamics: $V_{ion, /} = 0$ (to be relaxed in future work)
- e⁻ gyrocenters stay on cylinder of constant radius D (different for different e-'s)
- choose ion to be stationary at the origin (convenient)
 - gyrocenters move in a 1D potential:
 - weak nonlinearity (larger amplitudes => longer periods)

$$\ddot{z}(t) = -\frac{Ze^2}{4\pi\epsilon_0 m_e} \frac{z}{(D^2 + z^2)^{3/2}}$$

shortest oscillation period:

- $T_{lin} = \frac{2\pi}{c} \sqrt{\frac{D^3}{Zr_e}}$
- both trapped and passing orbits
- 1D numerical simulations are required to capture these effects

Key aspects of the numerical simulations

- Work in the system of reference where the ion is at rest
 - assume ion velocity along the field lines of $B \rightarrow axial$ symmetry)
 - $cold\ electrons\ \rightarrow all\ have\ the\ same\ initial\ velocity\ w.r.t.\ ion$
 - momentum kicks add up
- Dynamical friction comes from ion-induced *density perturbation*
 - force is the difference between perturbed & unperturbed e⁻ effects
 - hence, we track pairs of electrons with identical initial conditions
 - this approach eliminates all bulk forces, both physical and numerical
- Compute ensemble-average expectation value of friction
 - we assume a locally-uniform electron density n_e
 - transversely, e⁻-s are uniformly distributed on lines of constant D
 - there is no logarithmic singularity for $D \rightarrow 0$, nor for $D \rightarrow \infty$
 - longitudinal distribution is uniform in initial z position, z_{ini}
 - finite range of z_{ini} values contribute non-negligibly to the friction force
 - range depends on: D (impact parameter), V_{ion} , Z (ion charge state)
- Thermal e- effects are obtained via convolution

Finite friction for all ρ (no logarithmic singularities)

• First add up contributions to the friction force from initial conditions on lines of constant D, then integrate over the impact parameter:

$$F_{\parallel}(V_{\perp}=0) = 2\pi n_{e} \int_{0}^{\infty} dDDF_{line}(D) \equiv 2\pi n_{e} \int_{0}^{\infty} dDD \int_{-\infty}^{\infty} dz_{ini}F_{i-e}(z_{ini},D)$$

- Integrand is finite for small D & tails off exponentially => finite F_{\parallel}
- Exponential fall-off for large D makes it possible to correct (analytically) for a finite values of D_{max} in simulations
- Repeat for different values of $V_{\text{ion},\parallel}$ to compute F_{\parallel} ($V_{\text{ion},\parallel}$)

$F_{\parallel}(V_{ion,\parallel})$ for warm electrons constructed via convolution with electron distribution density

- For cold electrons and Au^{+79} ion, correct/expected qualitative behavior of $F_{\parallel}(V_{ion,\parallel})$ seen for both small and large $V_{ion,\parallel}$:
 - linear in V for small V
 - $1/V^2$ for large V
- For an arbitrary distribution $f(v_{e,\parallel})$ of warm electrons, $F_{\parallel}(V_{ion,\parallel})$ is computed by convolution of $f(v_{e,\parallel})$ with $F_{\parallel}(V_{ion,\parallel})$ for cold electrons

- Convolution with $f(v_{e,\parallel})$ acts as a smoothing filter => peak of $F_{\parallel}(V_{ion,\parallel})$ for warm electrons is lower and shifted towards larger $V_{ion,\parallel}$
- Just as for cold e^- gas, for warm electrons $F_{\parallel}(V_{ion,\parallel})$ is linear in $V_{ion,\parallel}$ for small $V_{ion,\parallel}$ and scales as $1/V^2$ in the large $V_{ion,\parallel}$ region
- As expected, $F_{\parallel}(V_{ion,\parallel})$ for different electron temperatures converge as $V_{ion,\parallel}$ gets larger

$F_{\parallel}(V_{ion,\parallel})$ for cold electrons: scaling in Z and T_{int}

- For cold electrons, looked at protons and Au⁺⁷⁹ ion and different interaction times in the cooler (still interaction-time-averaged force):
 - for small V, $dF_{\parallel}(V)/dV \approx 2Z n_e m_e r_e c^2 T_{int}$
 - large-V tail is well approximated by $F_{\parallel} \approx 2\pi Z^2 n_e m_e (r_e c^2)^2 / V^2$, with no dependence on T_{int}
 - for a given T_{int} , peak friction force scales as $Z^{4/3}$
- For $T_{int} < T_{pl}$ and small-to-moderate V_{ion} , $F_{\parallel}(V_{ion,\parallel})$ goes up with interaction time; large-V tail is T_{int} —independent
- $F_{\parallel}(V_{ion,\parallel})$ is linear in n_e by construction

Asymptotic model for cold, strongly magnetized electrons

$$F_{\parallel} = -\frac{3}{2} \omega_{pe}^{2} \frac{(Ze)^{2}}{4\pi\varepsilon_{0}} \left[\ln \left(\frac{\rho_{\text{max}}^{A}}{\rho_{\text{min}}^{A}} \right) \left(\frac{V_{\perp}}{V_{\text{ion}}} \right)^{2} + \frac{2}{3} \right] \frac{V_{\parallel}}{V_{\text{ion}}^{3}}$$

or, for large V_{ion} parallel to B

$$F_{\parallel}(V_{\perp}=0) = -4\pi Z^2 n_e m_e (r_e c^2)^2 \frac{1}{V_{\parallel}^2}$$

$$egin{aligned} r_L &= V_{rms,e,\perp} / \Omega_L ig(B_{\parallel}ig) \
ho_{\min}^A &= \max ig(r_L,
ho_{\min}ig) \
ho_{\max}^A &= \min ig(r_{beam},
ho_{\max}ig) \
ho_{\max} &= V_{rel} / \max ig(\omega_{pe}, 1/ auig) \ V_{rel} &= \max ig(V_{ion}, V_{e,rms,\parallel}ig) \end{aligned}$$

 $V_{ion}^2 = V_{||}^2 + V_{||}^2$

Ya. S. Derbenev and A.N. Skrinsky, "The Effect of an Accompanying Magnetic Field on Electron Cooling," Part. Accel. 8 (1978), 235.

Ya. S. Derbenev and A.N. Skrinskii, "Magnetization effects in electron cooling," Fiz. Plazmy 4 (1978), p. 492; Sov. J. Plasma Phys. 4 (1978), 273.

I. Meshkov, "Electron Cooling; Status and Perspectives," Phys. Part. Nucl. 25 (1994), 631.

Including thermal effects

$$\mathbf{F} = -\frac{1}{\pi} \omega_{pe}^2 \frac{(Ze)^2}{4\pi\varepsilon_0} \ln \left(\frac{\rho_{\text{max}} + \rho_{\text{min}} + r_L}{\rho_{\text{min}} + r_L} \right) \frac{\mathbf{V}_{ion}}{(V_{ion}^2 + V_{eff}^2)^{3/2}}$$

$$ho_{ ext{min}} = \left(Ze^2/4\piarepsilon_0
ight)\!\!/m_eV_{ion}^2 \
ho_{ ext{max}} = V_{ion}/ ext{max}\left(\omega_{pe},1/ au
ight) \ r_L = V_{rms,e,\perp}/\Omega_Lig(B_{\parallel}ig) \ V_{e\!f\!f}^2 = V_{e,rms,\parallel}^2 + \Delta V_{\perp e}^2 \$$

V.V. Parkhomchuk, "New insights in the theory of electron cooling," Nucl. Instr. Meth. in Phys. Res. A 441 (2000).

I. Meshkov, "Electron Cooling; Status and Perspectives," Phys. Part. Nucl. 25 (1994), 631.

Compare with Derbenev-Skrinsky and Parkhomchuk (1)

- Comparison of new model for an Au⁺⁷⁹ ion, with:
 - Derbenev and Skrinsky (D-S) for $V_{ion,\perp} = 0$ and large $V_{ion,\parallel}$
 - Parkhomchuk (P) with 0 and finite effective longitudinal e- temperature
- Consistently lower force than D-S and P for larger $V_{ion,\parallel}$

for lower ion velocity
 and warm electrons,
 details depend on Z

Compare with Derbenev-Skrinsky and Parkhomchuk (2)

- Comparison of new model for protons, with:
 - Derbenev and Skrinsky (D-S) for $V_{ion,\perp} = 0$ and large $V_{ion,\parallel}$
 - Parkhomchuk (P) with 0 and finite effective longitudinal e- temperature
- Consistently lower force than D-S and P for larger $V_{ion,\parallel}$
- For cold electrons:
 - new model shows
 consistently lower
 force values than
 Parkhomchuk at ALL
 velocities

Compare with Derbenev-Skrinsky and Parkhomchuk (3)

- Comparison of new model for protons (zoomed in), with:
 - Derbenev and Skrinsky (D-S) for $V_{ion,\perp} = 0$ and large $V_{ion,\parallel}$
 - Parkhomchuk (P) with 0 and finite effective long. e- temp
- Consistently lower force than D-S and P for larger $V_{ion,\parallel}$
- For warm electrons, new model agrees approximately with Parkhomchuk (but details depend on Z)
 - not yet known how
 often (in what sub domain of parameter
 space) this occurs

Simple, approximate 2-parameter model

$$F_{\parallel}(v) = \frac{Av}{(\sigma^2 + v^2)^{3/2}} \qquad A \approx 2\pi Z^2 n_e m_e (r_e c^2)^2$$
$$\sigma \approx (\pi Z r_e c^2 / T_{int})^{1/3}$$

- Large v:
 - $-F_{\parallel} \sim A/v^2$
 - A found via fit
- Small v:
 - $-dF/dv \sim A/\sigma^3$
 - $-\sigma$ found via fit
- Peak force is underestimated by ~10%

3-parameter model fits the calculations closely

- The physical system depends on 3 parameters:
 - $-n_e, Z, T_{int}$
- Captured via perturbation of 2-parameter model:
 - Tweak values of A and σ or add a small 3^{rd} parameter
- Improved
 parametric
 models are under
 development

Work in progress and future plans

- Improved parametrized models for cold electrons, and parametrized models for non-zero electron temperature
- Better understanding of the role of trapped vs unbound electron orbits
- The case of finite B
- What happens to the magnitude of dynamic friction force as the interaction time approaches/exceeds T_{pl} ?
- Modeling transverse dynamic friction (have to work with non-zero electron temperature from the start)
- Statistical properties of F(V): so far, only the expectation value was considered (in essence, the continuum limit)
- Adding new models to JSPEC as they become available, simulations in the JLEIC parameter regime
 - https://sirepo.com

Thank You!

Questions?

