

Novel Probes of Nucleon Structure in SIDIS, e+e- & pp (FF2019) Duke University, March 14, 2019

Simultaneous analysis of PDFs and fragmentation functions – JAM19 –

Wally Melnitchouk

https://www.jlab.org/jam

Overview

- JAM (Jefferson Lab Angular Momentum) collaboration aims to study the quark-gluon structure of hadrons through extraction of quantum probability distributions (PDFs, FFs, TMDs) via global QCD analysis using <u>Monte Carlo</u> based methods
- Methodology based on *Bayesian* statistics and Monte Carlo sampling of the parameter space
- Inter-dependence of observables on distributions requires <u>simultaneous</u> extraction of PDFs & fragmentation functions

Parton distributions in hadrons

Generic process: inclusive particle production $AB \rightarrow CX$

$$\sigma_{AB\to CX}(p_A, p_B) = \sum_{a,b} \int dx_a \, dx_b \, f_{a/A}(x_a, \mu) \, f_{b/B}(x_b, \mu)$$
$$\times \sum_n \alpha_s^n(\mu) \, \hat{\sigma}_{ab\to CX}^{(n)}(x_a p_A, x_b p_B, Q/\mu)$$

 \rightarrow extraction of functions $f_{a/A}$ characterizing structure of bound state A is a typical "<u>inverse problem</u>" Bayesian approach to global analysis

Analysis of data requires estimating expectation values E and variances V of "observables" O (functions of PDFs) which are functions of parameters

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

"Bayesian master formulas"

Using Bayes' theorem, probability distribution \mathcal{P} given by $\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z} \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$

in terms of the *likelihood function* \mathcal{L}

Bayesian approach to global analysis
Likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right)$$

is a Gaussian form in the data, with χ^2 function

$$\chi^{2}(\vec{a}) = \sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})} \right)^{2}$$

with priors $\pi(\vec{a})$ and evidence Z

$$Z = \int d^n a \, \mathcal{L}(\text{data}|\vec{a}) \, \pi(\vec{a})$$

 \rightarrow Z tests if *e.g.* an *n*-parameter fit is statistically different from (*n*+1)-parameter fit

Bayesian approach to global analysis

- Standard method for evaluating E, V via maximum likelihood
 - \rightarrow maximize probability distribution

 $\mathcal{P}(\vec{a}|\text{data}) \rightarrow \vec{a}_0$

 \rightarrow if \mathcal{O} is linear in parameters, and if probability is symmetric in all parameters

 $E[\mathcal{O}(\vec{a})] = \mathcal{O}(\vec{a}_0), \quad V[\mathcal{O}(\vec{a})] \to \text{Hessian} \quad H_{ij} = g$

$$I_{ij} = \frac{1}{2} \frac{\partial \chi^2(\vec{a})}{\partial a_i \partial a_j} \Big|_{\vec{a} = \vec{a}_0}$$

- In practice, since in general $E[f(\vec{a})] \neq f(E[\vec{a}])$, maximum likelihood method sometimes fails
 - \rightarrow need more robust (Monte Carlo) approach

$$E[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \mathcal{O}(\vec{a}_{k}), \quad V[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \left[\mathcal{O}(\vec{a}_{k}) - E[\mathcal{O}] \right]^{2}$$

Monte Carlo methods

First group to use MC for global PDF analysis was NNPDF, using neural network to parametrize P(x) in

E. Nocera talk

Forte et al. (2002)

$$f(x) = N x^{\alpha} (1-x)^{\beta} P(x)$$

 Markov Chain MC (MCMC) / Hybid MC (HMC)
 — recent "proof of principle" analysis, ideas from lattice QCD *Gbedo*, *Mangin-Brinet* (2017)

Nested sampling (NS) — computes integrals in Bayesian master formulas (for E, V, Z) explicitly
Skilling (2004)

■ First application of IMC — proton spin structure

Sato, WM, Kuhn, Ethier, Accardi (2016)

- → inclusion of JLab data increases # data points by factor ~ 2
- → reduced uncertainty in Δs^+ , Δg through Q^2 evolution
- → s-quark polarization *negative* from inclusive DIS data (assuming SU(3) symmetry)

Inclusive DIS data cannot distinguish between q and \overline{q}

 \rightarrow semi-inclusive DIS sensitive to $\Delta q \& \Delta \bar{q}$

 \rightarrow but need fragmentation functions...

Global analysis of DIS + SIDIS data gives different sign for strange quark polarization for different fragmentation functions!

 $\rightarrow \Delta s > 0$ for "DSS" FFs de Florian et al. (2007)

 $\Delta s < 0$ for "HKNS" FFs Hirai et al. (2007)

need to understand origin of differences in fragmentation functions

First MC analysis of fragmentation functions

Sato, Ethier, WM, Hirai, Kumano, Accardi (2016)

 \rightarrow convergence after ~ 20 iterations

First MC analysis of fragmentation functions

Sato, Ethier, WM, Hirai, Kumano, Accardi (2016)

- \rightarrow favored FFs well constrained; unfavored not as well...
- \rightarrow nontrivial shape of $s \rightarrow K$ fragmentation
- \rightarrow hard $g \rightarrow K$ fragmentation?

First simultaneous extraction of spin PDFs and FFs, fitting polarized DIS + SIDIS (HERMES, COMPASS) and SIA data

Ethier, Sato, WM PRL 119, 132001 (2017)

First simultaneous extraction of spin PDFs and FFs, fitting polarized DIS + SIDIS (HERMES, COMPASS) and SIA data

- → some constraint from SIDIS on unfavored FFs $(e.g. \ s \rightarrow K^+)$, but uncertainties still large
- \rightarrow new result more consistent with DSS at moderate z

Polarized strangeness in previous, DIS-only analyses was negative at $x \sim 0.1$, induced by SU(3) and parametrization bias

→ weak sensitivity to ∆s⁺ from DIS data & evolution
 — SU(3) pulls ∆s⁺ to generate moment ~ -0.1
 — negative peak at x ~ 0.1 induced by fixing b ~ 6 - 8

 \rightarrow less negative $\Delta s = -0.03(10)$ gives larger total helicity $\Delta \Sigma = 0.36(9)$

Strange quarks

- What impact does unpolarized strange PDF have on the extraction of polarized strange?
 - \rightarrow only systematic way is to fit unpolarized PDFs, polarized PDFs and fragmentation functions simultaneously...
- Shape of unpolarized strange PDF is interesting (and controversial) in its own right!
 - \rightarrow historically, strange to nonstrange ratio $\kappa = \frac{s + \overline{s}}{\overline{n} + \overline{d}} \sim 0.2 0.5$

- "Inverse problem" leads to multiple solutions
 - \rightarrow explore possible correlations between solutions by identifying *clusters* of solutions
- Use <u>k-means clustering</u> algorithm to identify regions in parameter space where solutions cluster

1. k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

2. k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

The centroid of each of the k clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

■ fixed-target DIS only

■ fixed-target DIS + HERA

■ fixed-target DIS + HERA + DY

■ SIA (pion)

■ SIA (pion) + SIDIS (pion)

■ fixed-target DIS + HERA + DY + SIA (pion) + SIDIS (pion)

■ SIA (kaon)

■ SIA (kaon) + SIDIS (kaon) + ...

■ fixed-target DIS + HERA + DY + SIA (pion) + SIDIS (pion)

chi2/nots

need more precise SIDIS data (JLab I 2, EIC)

Strange quarks from PVDIS

- Parity-violating DIS allows strange contribution to be isolated, when combined with e.m. p and n DIS data at low/intermediate x
 - \rightarrow at leading order

$$F_{2}^{\gamma p} = \frac{4}{9}x(u+\bar{u}) + \frac{1}{9}x(d+\bar{d}+s+\bar{s}) + \cdots$$

$$F_{2}^{\gamma n} = \frac{4}{9}x(d+\bar{d}) + \frac{1}{9}x(u+\bar{u}+s+\bar{s}) + \cdots$$

$$F_{2}^{\gamma Z,p} = \left(\frac{1}{3} - \frac{8}{9}\sin^{2}\theta_{W}\right)x(u+\bar{u}) + \left(\frac{1}{6} - \frac{2}{9}\sin^{2}\theta_{W}\right)(d+\bar{d}+s+\bar{s}) + \cdots$$

$$\approx \frac{1}{9}x(u+\bar{u}+d+\bar{d}+s+\bar{s}) + \cdots \text{ for } \sin^{2}\theta_{W} \approx 1/4$$

- → 3 equations with 3 unknowns; order of magnitude greater sensitivity of γZ to strange PDF
- $\rightarrow V \times A$ term also sensitive to $s \bar{s}$

$$F_3^{\gamma Z,p} = \frac{2}{3}(u - \bar{u}) + \frac{1}{3}(d - \bar{d} + s - \bar{s}) + \cdots$$

Outlook

New paradigm in global analysis — *simultaneous* determination of collinear distributions using MC sampling of parameter space

Short-term: "universal" QCD analysis of all observables sensitive to collinear (unpolarized & polarized) PDFs and FFs

Longer-term: technology developed will be applied to global analysis of transverse momentum dependent (TMD) distributions to map out full 3-d image of hadrons