Radiative DIS and SIDIS

Harut Avakian (JLab)

FF2019 16 March 2019

Workshop on Novel Probes of the Nucleon Structure in SIDIS, e+e- and pp

- The role of input SFs in RC
- Comparing RCs in DIS
- Radiative correction in SIDIS
- Tests and validation
- Summary

Radiative DIS

From SIDIS to DIS

$$\frac{d\sigma}{dx \, dQ^2 \, d\psi \, dz \, d\phi_h \, d|P_{h\perp}|^2} = \frac{\alpha^2}{xQ^4} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L}\right\}.$$

$$3D \text{ SIDIS}$$

$$F_{UU,T}(x, z, Q^2) = \int d^2 \vec{P}_{h,\perp} F_{UU,T}(x, z, P_{h,\perp}^2, Q^2)$$

$$\frac{d\sigma(lN \to lX)}{dx \, dQ^2 \, d\psi} = \frac{1}{\nu + M} \sum_h \int E_h \, dE_h \frac{d\sigma(lN \to lhX)}{dx \, dQ^2 \, d\psi \, dE_h} = \frac{\nu}{\nu + M} \sum_h \int z \, dz \frac{d\sigma(lN \to lhX)}{dx \, dQ^2 \, d\psi \, dz}$$

$$1D \text{ SIDIS}$$

$$\frac{d\sigma}{dx \, dQ^2 \, d\psi} = \frac{2\alpha^2}{xQ^4} \frac{y^2}{2(1-\varepsilon)} \left\{F_{UU,T}(x, Q^2) + \varepsilon F_{UU,L}(x, Q^2)\right\}.$$

$$\frac{d\sigma}{dx \, dQ^2 \, d\psi} = \frac{2\alpha^2}{xQ^4} \frac{y^2}{2(1-\varepsilon)} \left\{2(1-\varepsilon)xF_1(x, Q^2) + \varepsilon(1+\gamma^2)F_2(x, Q^2)\right\}.$$

$$DIS$$

$$F_{UU,T}(x, Q^2) = F_T(x, Q^2) = 2xF_1(x, Q^2) - 2xF_1(x, Q^2) = \sum_h \int z \, dzF_{UU,L}(x, z, Q^2)$$

CLAS12 main trigger is e'X, DIS and SIDIS collected simultaneously

Jefferson Lab

Comparing different DIS models

How critical are 10-20% differences in extraction of underlying PDFs?

Comparing DIS MCs (Bosted vs RadGen)

Radiative DIS

Akushevich et al. http://www.jlab.org/RC/radgen/

Radiative correction become very significant for low energy scattered electron

Radiative **DIS**

Akushevich et al. http://www.jlab.org/RC/radgen/

Figure 1: Feynman diagrams contributing to the Born and the radiative correction cross sections in lepton-nucleus scattering.

Important to include the radiated photon in the MC

RC change few % with input SFs, and can affect precision measurements

Azimuthal asymmetries in SIDIS

- Large cos

 modulations observed by EMC were reproduced in electroproduction of hadrons in SIDIS with unpolarized targets at COMPASS and HERMES
- Effect is dominated by non-perturbative Cahn contribution

All moments are relevant

Simonetta Liuti (UVA) CTEQ Fall Meeting, Nov 10

Avakian, FF2019 March 16

Radiative SIDIS

Akushevich&llyichev in progress

$$e(k_1,\xi) + n(p,\eta) \to e(k_2) + h(p_h) + u(p_u) + \gamma(k),$$
 $\delta^4(k_1 + p - k_2 - p_h - p_u - k)$

Avakian, FF2019 March 16

From x-section to events

In unpolarized target case:

$$\sigma_0^{ehX}(x, y, ..\phi, \lambda) = \sum_{l,i} K_l(x, y, ..) (F_{l,i}(x_1, ..x_N) \cos(i\cos\phi_h) + \lambda F_{l,i}^{\lambda}(x_1, ..x_N) \sin(i\phi_h)$$

For polarized targets more SFs and new variable ϕ_{S}

When we turn on QED radiation x-section gets additional 3variables, after integration over which, we can obtain the radiative x-section

$$\sigma_{Rad}^{ehX}(x,y,z,P_T,\phi,\phi_S) \rightarrow \sigma_0^{ehX}(x,y,z,P_T,\phi,\phi_S) \times R(x,y,z,P_T,\phi_h) + R_A(x,y,z,P_T,\phi,\phi_S)$$

RC generates additional moments and modifies existing ones

Experiment has certain acceptance function $A(x, Q^2, P_T, z, \phi)$: defining fraction of events accepted in a given phase space defined by kinematical variables

The number of events the experiment will measure in a given phase space in a given Δt :

$$N_{measured} = Luminosity * \int_{phasespace} \frac{d\sigma_{Rad}^{ehX}(x, y, ...)}{dSpace} * A(x, Q^2, P_T, z, \phi)$$

3D PDF Extraction and VAlidation (EVA) framework

Development of a reliable techniques for the extraction of 3D PDFs and fragmentation functions from the multidimensional experimental observables with controlled systematics requires close collaboration of experiment, theory and computing

Summary

- For SIDIS studies we need a MC generator with flexible input (x-sections, structure functions, grids, functional forms) which can generate events in full phase space, including the full set of involved SFs with radiative effects.
- Extraction of sets of SF in iterative procedure for SIDIS generation-reconstruction-acceptance-radiative correctionsbin-centering corrections should be validated using the MC with well defined reasonable input.
- Input from theory/phenomenology and output from experiment should have a well defined unified structure

Support slides...

F2 Nobuo vs CJ15

Difference more significant at small Q²

Generators: x-section vs weights

- Two approaches for DIS event generation (x-section based and weighted) are fully compatible (2M events generated in both cases)
- Using weights for events makes the generation much faster, and most importantly provides statistics for acceptance studies in small bins.

Generators: x-section vs weights

full kinematics (2M events)

• Two approaches are fully compatible (2M events generated in both cases)

Binning in DIS

With small bins x,y-binning will be much better for extraction of SFs

- 1) scale variable
- 2) fixed range
- 3) smaller change in resolution

Avakian, FF2019 March 16

Binning in DIS

For small bins in x-q2 or x-y spread in other kinematical variables is becoming small (x2-3 resolution in θ and E'), reducing the role of bin-centering corrections and variations of structure functions in the bin

DIS output and data analysis

Experimental

$$\frac{d\sigma_{\lambda\Lambda}^{eN \to e'hX}}{dx dQ^2 d\phi_l} = \sum_{l=1}^{L} SF_l$$

(for a given $\mathsf{E}_{\mathsf{beam}},\!\lambda,\!\Lambda$) measure

step-2: define the acceptance, estimate radiative effects

step-3 produce a table of corrected counts/cross sections and systematic errors in <u>given bins</u>

$$x_i, Q_i^2/x_i, y_i/\dots$$

jel

Phenomenology

$$F_l(x_1, x_2, x_3, \dots x_N, P_1^*, P_2^*, \dots P_M^*)$$

in extraction of the parameters for given SF set)

Standard input for SFs

```
(JavaScript Object Notation for a single
"Elab": "10.6",
"author": "N. Sato",
                                                  hadron production eN -> e'X)
"axis": [
    £
        "bins": 200,
        "description": "Bjorken x",
        "max": 0.999,
        "min": 0.05023842613463728,
        "name": "a",
        "scale": "arb"
   },
    Ł
        "bins": 200,
        "description": "y",
                                                       Table can be generated from any
        "max": 0.999,
        "min": 0.05023842613463728,
                                                       existing program for calculation of SFs
        "name": "b",
                                                       for any given set of parameters, final
        "scale": "arb"
    }
                                                       state particles, target nucleon,
],
"aenerator": "JAM",
                                                       polarization states in tiny bins.
"lepton": "e-".
"reaction": "DIS",
"target": "p",
"variables": [
    "x,y,Q2,F2,FL,FL,dsig/dxdy"
٦
    ix
               iy
                                                  02
                                                              F2
                                                                         FL
                                                                                     F3
                                                                                        dsig/dxdy
     0
              191 5.2610e-02 9.5868e-01 1.0039e+00 3.0120e-01 6.0973e-02 5.4901e-04 1.6325e-03
     0
              192 5.2610e-02 9.6342e-01 1.0089e+00 3.0160e-01 6.0859e-02 5.5211e-04 1.6154e-03
     0
              193 5.2610e-02 9.6817e-01 1.0139e+00 3.0199e-01 6.0746e-02 5.5522e-04 1.5987e-03
     0
              194 5.2610e-02 9.7291e-01 1.0188e+00 3.0239e-01 6.0633e-02 5.5832e-04 1.5823e-03
     0
              195 5.2610e-02 9.7765e-01 1.0238e+00 3.0278e-01 6.0522e-02 5.6142e-04 1.5662e-03
     ø
              196 5.2610e-02 9.8240e-01 1.0288e+00 3.0317e-01 6.0411e-02 5.6453e-04 1.5503e-03
     0
              197 5.2610e-02 9.8714e-01 1.0337e+00 3.0355e-01 6.0301e-02 5.6763e-04 1.5348e-03
              198 5.2610e-02 9.9188e-01 1.0387e+00 3.0394e-01 6.0192e-02 5.7074e-04 1.5196e-03
     ø
```

Jefferson Lab

ł

Extraction of DIS x-section and acceptance

```
"model": "Nobuo_F2,FL"
   "reference": "N. Sato et al"
   "multiplicity":"Counts"
   "Beam Energy": 10.600
   "lepton-polarization": "0"
   "nucleon-polarization": "0"
   "particle": "pi+"
   "variables":["N","Counts","Err.Counts","acc","RadCor","xav","yav","g2av"
   "axis":[
                                                                                                          Radiative corrections
            {"name":"a","bins": 99,"min": 0.05, "max": 0.95, "scale":"lin","description":"x_bj"}
            {"name":"b","bins": 99,"min": 0.95, "max": 13.1, "scale":"lin","description":"Q^2"}
                                                                                                          may be significant
],
   "parameters":[
]
                            0.33103E+07
                                           0.11567E+06
                                                                           2.5475
                                                                                     0.0566
                                                                                                0.9099
                                                                                                          1.0248
 0
      0
              0.81900E+03
                                                          0.18094E+00
 0
                                                                           3.1196
                                                                                                0.9392
                                                                                                          1.0883
      1
              0.17300E+03
                            0.79404E+06
                                           0.60369E+05
                                                         0.83559E-01
                                                                                     0.0583
              0.14940E+04
                            0.45989E+07
                                                         0.43024E+00
                                                                           1.7770
                                                                                     0.0631
                                                                                                0.8246
                                                                                                          1.0334
 1
      0
                                           0.11898E+06
 1
      1
              0.24200E+04
                            0.78833E+07
                                           0.16025E+06
                                                         0.38679E+00
                                                                           2.2943
                                                                                     0.0637
                                                                                                0.8924
                                                                                                          1.1298
 1
      2
              0.74100E+03
                            0.25279E+07
                                           0.92865E+05
                                                         0.18311E+00
                                                                           2.7515
                                                                                     0.0664
                                                                                                0.9300
                                                                                                          1.2276
 2
      0
                            0.29902E+07
                                                                           1.4475
                                                                                     0.0725
                                                                                                0.7176
                                                                                                          1.0332
              0.10610E+04
                                           0.91799E+05
                                                         0.34089E+00
 2
              0.21560E+04
                                                                           1.5917
                                                                                     0.0723
                                                                                                0.7891
      1
                            0.54615E+07
                                           0.11762E+06
                                                         0.44019E+00
                                                                                                          1.1339
 2
      2
                                                                           2.0516
                                                                                                0.8767
                                                                                                          1.2579
              0.26110E+04
                            0.66272E+07
                                           0.12970E+06
                                                         0.51925E+00
                                                                                     0.0722
 2
      3
              0.15350E+04
                            0.41679E+07
                                           0.10638E+06
                                                         0.29366E+00
                                                                           2.5589
                                                                                     0.0744
                                                                                                0.9235
                                                                                                          1.3654
 2
              0.48000E+02
                            0.14361E+06
                                           0.20728E+05
                                                         0.41388E-01
                                                                           3.0801
                                                                                     0.0768
                                                                                                0.9478
                                                                                                          1.4485
      4
 3
              0.82900E+03
                            0.23725E+07
                                           0.82399E+05
                                                         0.30402E+00
                                                                           1.3423
                                                                                     0.0816
                                                                                                0.6379
                                                                                                          1.0341
      0
 3
      1
              0.15660E+04
                            0.38319E+07
                                           0.96832E+05
                                                         0.35124E+00
                                                                           1.4013
                                                                                     0.0816
                                                                                                0.6993
                                                                                                          1.1334
 3
      2
              0.20270E+04
                            0.42636E+07
                                           0.94699E+05
                                                         0.44952E+00
                                                                           1.5274
                                                                                     0.0814
                                                                                                0.7773
                                                                                                          1.2578
 3
      3
              0.24600E+04
                            0.49319E+07
                                           0.99437E+05
                                                         0.54600E+00
                                                                           1.8039
                                                                                     0.0814
                                                                                                0.8531
                                                                                                          1.3798
 3
              0.22240E+04
                            0.48486E+07
                                           0.10281E+06
                                                          0.43699E+00
                                                                           2.3514
                                                                                     0.0822
                                                                                                0.9135
                                                                                                          1.4934
              0 440005.00
                            0 100505.07
                                           0 470405.05
                                                          0 151505.00
                                                                           2 2224
                                                                                      0 0050
                                                                                                0.000
                                                                                                          1 .....
```

- Acceptance can be used to correct distributions for monitoring
- DIS output can be generated using input F₁, F₂ or F₂, F_L or directly x-sections

Recovering generated input from reconstructed set

- Acceptance can be defined using the weighted generator set
- Both MCs after reconstruction recover the generated input in most of the kinematics.)

$\boldsymbol{\theta}$ vs E': json file for online monitoring

D	Dedicated DIS generator with radgen (gemc input)												
	1 -: 2 (2 1. 0.	1 1 1	11 22	1 0 0 1 0	0.12 -1.2610 0.2821	1.04 -0.0968 -0.0185	11 10. 1.5722 0.3528	600 2212 2.0177 0.4521	1 0.688268 0.0005 0.0000	83E-05 0.123 -0.0185 -0.0185	5496E+00 0.0768 0.0768	11.55 8.13 -0.4312 -0.4312
10 E 8 6 4 2 0	5 Si	gni	I0 ficai	15 nt fr may	2 act / be	10 25 ion of E e recon	30 θγ DIS radi	35 4 ative	Counts	$ \begin{array}{c} 10 & \begin{array}{c} 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	2 4	 6 الک Entries	1000000 49127 30 35 40 θg

Acceptance function

Recovering generated input from generated set

Reasonable agreement with generated input (filled symbols \rightarrow N. Sato)

Generating DIS and SIDIS

Full event generator (PEPSI)

		N _{tracks}	А	Ν	I-p	ool N-po	ol I-ID E _b	_{eam T} T-	ID proces	s-ID x-sec	ction		
		13	1	1	0.0	0 1.0 :	11 10.600	2212	1 0.805275	9E+05			
1	-1.	21	11	0	0	0.0000	0.0000	10.6000	10.6000	0.0005	0.0000	0.0000	0.0000
2	1.	21	2212	0	0	0.0000	0.0000	0.0000	0.9383	0.9383	0.0000	0.0000	0.0000
3	0.	21	22	1	0	-0.9974	-0.7292	3.5178	3.4109	-1.5059	0.0000	0.0000	0.0000
4	-1.	1	11	1	0	0.9974	0.7292	7.0822	7.1891	0.0005	0.0000	0.0000	0.0000
5	1.	13	2	0	6	-1.0092	-0.9040	3.2382	3.5102	0.0056	0.0000	0.0000	0.0000
6	0.	13	2103	2	0	0.0117	0.1747	0.2796	0.8389	0.7713	0.0000	0.0000	0.0000
7	1.	12	2	5	9	-1.0092	-0.9040	3.2382	3.5102	0.0056	0.0000	0.0000	0.0000
8	0.	11	2103	6	9	0.0117	0.1747	0.2796	0.8389	0.7713	0.0000	0.0000	0.0000
9	0.	11	92	7	10	-0.9974	-0.7292	3.5178	4.3492	2.2391	0.0000	0.0000	0.0000
10	۲.	11	2224	9	12	-0.7729	-1.0806	3.4710	3.9069	1.2047	0.0000	0.0000	0.0000
11	-1.	1	-211	9	0	-0.2245	0.3514	0.0468	0.4422	0.1396	0.0000	0.0000	0.0000
12	1.	1	2212	10	0	-0.5843	-0.9049	2.3668	2.7645	0.9383	0.0000	0.0000	0.0000
13	1.	1	211	10	0	-0.1886	-0.1757	1.1042	1.1425	0.1396	0.0000	0.0000	0.0000

$$\frac{d\sigma}{dx\,dQ^2\,d\psi\,dz\,d\phi_h\,d|\mathbf{P}_{h\perp}|^2} = \frac{\alpha^2}{xQ^4}\,\frac{y^2}{2\,(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}+\varepsilon\,F_{UU,L}\right\}.$$

Dedicated (inclusive pion generator)

•			-		-									
	2	1	1	1.0	1.0	11	10.600	2212	1	0.1108596E	-01			
1 -1.	1	11	0	0	-0.7583	-0	.7440	3.9571		4.0972	0.0005	-0.0174	0.0305	1.3425
21.	1	211	0	0	0.8698	-0	.6332	3.2529		3.4291	0.1396	-0.0174	0.0305	1.3425
	2	1	1	1.0	1.0	11	10.600	2212	1	0.4220764E	-02			
1 -1.	1	11	0	0	-1.1716	0	.9665	3.2259		3.5656	0.0005	0.0016	-0.0436	-1.5889
21.	1	211	0	0	0.1630	-0	.4267	3.5986		3.6302	0.1396	0.0016	-0.0436	-1.5889
$\frac{d\sigma}{dx dQ^2}$	$\frac{1}{2} d\psi$	$=\frac{a}{a}$	2α rQ	$\frac{2}{4}$	$\frac{y^2}{2(1-x)^2}$	$\frac{1}{\varepsilon}$	2(1	$-\varepsilon x$	F	$f_1(x, Q^2)$	$+ \epsilon(1$	$(+\gamma^2)F_2$	(x, Q^2)	}

Dedicated DIS generator

	2	1	1		0.12	1.04	11 10.	600 2212	1 0.68826	83E-05 0.123	5496E+00	11.55 8.13
1 -1	. 1	11	0	0	-1.2610	-0.0968	1.5722	2.0177	0.0005	-0.0185	0.0768	-0.4312
Z Ø	. 1	22	1	0	0.2821	-0.0185	0.3528	0.4521	0.0000	-0.0185	0.0768	-0.4312

Avakian, FF2019 March 16

0 (twist-4)

DIS input from theory and phenomenology

Study the effect of F_UU,L (accounted in DIS and ignored in SIDIS)

- Different Q²-dependent factors contribute.
- Separation is important for DIS, but will be critical for SIDIS

Kinematic distributions

 $e\pi X$ events compared with $e\pi X$ events from PYTHIA tuned to data

Simple event generator should be "reasonable"

CLAS and Projected CLAS12 Inclusive Cross Sections

- First precise measurements of inclusive cross section evolution with W and Q^2 in the resonance region (smallest bin sizes over W, Q^2 ever achieved)
- Yield valuable insight into quark hadron duality

Jefferson Lab

