Hadron mass corrections in SIDIS and DIS

Alberto Accardi Hampton U. and Jefferson Lab

FF 2019

Duke U. – Mar 15th, 2019

Overview

Hadron Mass Corrections in SIDIS

- Collinear factorization with non-zero masses
- Kaons (and pions) at HERMES vs COMPASS (vs JLab)

Testing HMCs in a spectator model

DIS case, to begin with

Fragmentation w/o fragments: "Inclusive jet" mass effects

- Dressed vs. perturbative quark
- Jet mass as χ-simmetry order parameter
- Observability:
 - Non-perturbative FF sum rule for Etilde
 - g₂ in DIS; e+e– collisions

Hadron mass corrections in SIDIS

Guerrero, Accardi, PRD 97 (2018) 114012 Guerrero, Ethier, Accardi, Melnitchouk, Casper, JHEP 1509 (2015) 169 Accardi, Hobbs, Melnitchouk, JHEP 0911 (2009) 084

Strange quark parton distribution function (PDF)

 $p+p \rightarrow W+c$

Charged current DIS $\nu + A \rightarrow l + c + X$

- ATLAS: no suppression
- CMS: suppression
- νA : suppression

Svenja Pflitsch, DIS 2018

Alekhin et al., arXiv:1404.6469

s-PDF from SIDIS

Measuring a Kaon in Semi inclusive Deep inelastic scattering (SIDIS)

$$e^- + p \rightarrow e^- + K + X$$

- Kaons contain one s-quark in their valence structure.
- Detect a Kaon: good proxy for a strange quark in proton

Integrated Kaon Multiplicities: SIDIS on Deuteron

- HERMES:
- Claim very different s-quark shape compared to CTEQ6L.
- Strange PDF may not be what we think!
- But COMPASS:
- Different x_B dependence
- Overall values higher

Where does this difference come from? Is it real or apparent?

FF 2019 – March 15th, 2019

Integrated Kaon Multiplicities: SIDIS on Deuteron

HERMES:

 Claim very different s-quark shape compared to CTEQ6L.
 → strange PDF may not be what we think!

But COMPASS ratio:

- (Almost) same shape
- Overall lower
 - → still different from HERMES

Where does this difference come from? Is it real or apparent?

accardi@jlab.org

FF 2019 – March 15th, 2019

7

Because of NLO, Q² evolution?

NNPDF +DSS17

- Theory shapes =/= data
- Other effects?

0

Because of Hadron Mass Effects?

Usually in pQCD, the masses of proton and detected hadron are neglected

accardi@jlab.org

Massive scaling variables

Collinear factorization with masses

accardi@jlab.org

Guerrero, Accardi, PRD 2018 (see also Collins, Rogers, Stasto 2007) 1) Expand the correlators $\Phi_{a} = k^{+} \left[\phi_{2}(k) \hbar + \mathcal{O}(1/k^{+}) \right]$ $H \sim \nu$ $\Delta_a = k'^- \left[\delta_2(k') \not n + \mathcal{O}(1/k'^-) \right]$ Φ_{q} contribute to Higherleading terms X Twist (HT) terms 2) Expand the hadronic tensor $2MW^{\mu
u} = \int d^4k \; d^4k' \; \mathrm{Tr} \left[\Phi_q(p,k) \, \gamma^\mu \, \Delta^h_q(k',p_h) \, \gamma^
u \right] \, \delta^{(4)}(k+q-k')$ $= \int d^4k \ d^4k' \ \phi_2(k) \delta_2(k') \operatorname{Tr} \left[k^+ \not n \gamma^{\mu} \ k'^- \not n \gamma^{\nu} \right] \ \delta^{(4)}(k+q-k') + \operatorname{HT}$. 3) Approx only the (overall) 4-mom conserv. Note: $q_{\mu}W^{\mu\nu} = 0$ $k \approx \widetilde{k} : \quad k' \approx \widetilde{k}'$

FF 2019 – March 15th, 2019

Approximation: collinear momenta

Matching Hadronic and Partonic Kinematics at LO

(much more detail in Guerrero et al., JHEP 2015)

Fragmenting blob: momentum conservation in + direction

Hard scattering: 4-momentum conservation at LO

Collinear factorization with masses - LO case

(4) Let 3 integrations out of 4 act on correlators, obtain

$$2MW^{\mu\nu} = \sum_{q} e_q^2 \int \frac{dx}{x} \frac{dz}{z} q(x) \mathcal{H}^{\mu\nu}(x,z) D_q(z) + \mathrm{HT}$$

$$q(x) = \int dk^{-} d^{2}k_{T}\phi_{2}(k) \qquad \text{PDF}$$

$$D_{q}(z) = (z/2) \int dk'^{+} d^{2}k'_{T}\delta_{2}(k) \qquad \text{FF}$$

$$\mathcal{H}^{\mu\nu}(x,z) = \frac{1}{2z} \text{Tr} [k_{0}\gamma^{\mu}k'_{0}\gamma^{\nu}] \qquad \text{Hard scattering coefficient}$$

$$\mathbf{x} \ \delta \left(k_{0}^{+} + q^{+} - \frac{v'^{2}}{2k'_{0}^{-}}\right) \delta \left(\frac{v^{2}}{2k_{0}^{+}} + q^{-} - k'_{0}^{-}\right) \delta^{(2)}(\mathbf{k'_{0T}})$$

$$x = \xi_{h} \equiv \xi \left(1 + \frac{m_{h}^{2}}{\zeta_{h}Q^{2}}\right) \qquad z = \zeta_{h} \qquad k_{0} \equiv \tilde{k}|_{v=0}$$

FF 2019 – March 15th, 2019

accardi@jlab.org

Leading Order (LO) Multiplicities at finite Q²

With Hadron Masses:

Scale dependent Jacobian

$$\begin{aligned}
\text{Finite } Q^2 \text{ scaling variables} \\
M^h(x_B) &= \frac{\int_{exp.} dQ^2 \int_{0.2}^{0.8} dz_h J_h(\xi, \zeta_h, Q^2) \sum_q e_q^2 q(\xi_h, Q^2) D_q^h(\zeta_h, Q^2)}{\int_{exp.} dQ^2 \sum_q e_q^2 q(\xi, Q^2)}
\end{aligned}$$

Note: Theory integrated over *z*, Q^2 exp. bins for each x_B

• Massless limit:
$$\left(\frac{M^2}{Q^2}, \frac{m_h^2}{Q^2}\right) \to 0$$

 $M^{h(0)}(x_B) = \frac{\int_{exp.} dQ^2 \sum_q e_q^2 q(x_B, Q^2) \int_{0.2}^{0.8} dz_h D_q^h(z_h, Q^2)}{\int_{exp.} dQ^2 \sum_q e_q^2 q(x_B, Q^2)}$
Parton model definition

 $\xi_h \equiv \xi \Big(1 + rac{m_h^2}{\zeta_h Q^2} \Big)$

HERMES & COMPASS data: direct comparison

Use suitable **"Theoretical correction** ratios"

- Produce approximate "massless" parton model multiplicities
- Make data directly comparable
- Largely insensitive to FF normalization

COMPASS:

HERMES & COMPASS data: direct comparison

Use suitable **"Theoretical correction ratios"**

- Produce approximate "massless" parton model multiplicities
- Make data directly comparable
- Largely insensitive to FF normalization

Multiplicities in a massless world:

– mass corrected (and evolved) M^h –

COMPASS: $M_{exp}^{h(0)} \equiv M_{exp}^h \times R_{HMC}^h$ HERMES: $M_{exp}^{h(0)} \equiv M_{exp}^h \times R_{HMC}^h \times R_{evo}^{H \to C}$

Correction ratios

- Hadron mass effects dominant over evolution effects
- COMPASS has smaller HMCs but non-negligible!

Direct Data Comparison: K⁺/K⁻

- HERMES & COMPASS fully compatible.

– large x downturn at HERMES ??

Direct Data Comparison: K⁺ + K⁻

– After HMCs:

- > almost compatible in size
- > negative slope, as it should (but hockey stick at HERMES)
- Residual slope difference: needs NLO, FF refit

Pion ratios vs. JLab

Pion ratios after HMCs:

- all approximately compatible
- JLab pions slightly prefer COMPASS
 ...but large stat. uncertainties
- small differences could be solved by:
 NLO effects, pion FF refit with HMCs

Direct Data Comparison: pi⁺ + pi⁻

Shapes still incompatible

• – "Hockey stick" at HERMES: but u, d quarks well known, not like s for Kaons!

Testing the HMC scheme

Guerrero, Accardi, in preparation + Accardi, Alcalá, Guerrero, in progress

Factorization with masses in a spectator model

Guerrero, AA – in prep.

Use spectator model:

- Known parameters, analytical calculations
- Full vs. factorized cross section; PDFs: calculated vs. fitted

Start simple: DIS

- Then SIA (3-body phase space)
- Then SIDIS (cimplex interplay of IS and FS kinematics)

Factorization with masses in a spectator model

Gauge invariance: need also quasi-elastic photon-proton scattering *Moffat et al, PRD 95 (2017)*

Gauge invariant individual contributions *Guerrero, AA – in prep.*

- Use $P_T^{\mu,\nu}, P_L^{\mu,\nu}$ projectors

accardi@jlab.org

 Non-negligible interf. contribution even at small x_B

Structure Function: DIS vs. Collinear

26

"Inclusive jet" mass effects: fragmentation without fragments

Accardi, Signori, arXiv:1903.04458 Accardi, Bacchetta, PLB 773 (2017) 632

> + work in progress: AA, Signori AA, Bacchetta, Radici, Signori

Inclusive jet correlator

Quark are not asymptotic states

- Hadronization products pass the cut
- Define a gauge invariant quark-to-jet amplitude squared

Inclusive $q \rightarrow X$ "jet" correlator

Integrate out the large momentum component:

TMD Inclusive jet correlator

$$J_{ij}(k^-, \boldsymbol{k}_T) \equiv rac{1}{2} \int dk^+ \Xi_{ij}(k) \, ,$$

 $\Xi_{ij}(k;n_+) = \operatorname{Disc} \int \frac{d^4\xi}{(2\pi)^4} e^{\mathbf{i}k\cdot\xi} \frac{\operatorname{Tr}_c}{N_c} \langle \Omega | \mathcal{T} W^{n_+}_{(\infty,\xi)} \psi_i(\xi) \overline{\psi}_j(0) W^{n_T}_{(0,\infty)} | \Omega \rangle$

AA, Signori, 1903.04458

TMD jet correlator in full glory

AA, Signori, 1903.04458 + work in preparation

Expand in Dirac structures, take traces, use spectral representation:

$$J(k^{-}, \mathbf{k}_{T}) = \left\{ \gamma^{+} + \frac{M_{j}}{k^{-}} \mathbb{I} + \frac{\mathbf{k}_{T}}{k^{-}} + \frac{(K_{jet}^{2} + T_{jet}^{2} + g.f.) + k_{T}^{2}}{2(k^{-})^{2}} \not{n}_{-} \right\} \theta(k^{-})$$

where, in light-cone gauge,

□ $\rho_{1,3}$ are Khallen-Lehman spectral functions: → strength of quark-to-multihadron coupling

TMD jet correlator in full glory

AA, Signori, 1903.04458 + work in preparation

Expand in Dirac structures, take traces, use spectral representation:

$$J(k^{-}, \mathbf{k}_{T}) = \left\{ \gamma^{+} + \frac{M_{j}}{k^{-}} \mathbb{I} + \frac{\mathbf{k}_{T}}{k^{-}} + \frac{(K_{jet}^{2} + T_{jet}^{2} + g.f.) + k_{T}^{2}}{2(k^{-})^{2}} \not{n}_{-} \right\} \theta(k^{-})$$

"Perturbatively", or neglecting quark-gluon-quark correlations:

$$\begin{split} M_{jet}^{pert} &= m_q & \quad \text{Current quark mass} \sim \text{O(1 MeV)} << M_{_{jet}} \\ P_{jet}^{2 \ pert} &= m_q^2 & \quad \text{On-shell quark} \\ T_{jet}^{2 \ pert} &= \dots \text{in progress}... \end{split}$$

Novel FF sum rules: M_{iet} is observable!

AA, Signori 1903.04458

General jet correlator sum rule:

$$\sum_{h,S_h} \int d^2 p_{hT} \frac{dp_h^-}{2p_h^-} p_h^\mu \Delta^h(l,p_h) = \begin{cases} k^- \Xi(l) & \mu = - \text{ longitudinal} \\ k_T^\mu \Xi(l) & \mu = 1,2 \text{ transverse} \end{cases}$$

For TMDs, integrate out k+, take suitable traces

Quark-quark sum rules Quark-gluon-quark sum rules Collins-Soper Non-zero in χ limit: $[\Gamma = \gamma^{-}] \qquad \sum_{h \in S} \int dz z D_{1}^{h}(z) = 1$ order parameter for DxSB $[\Gamma = \mathbb{I}] \qquad \sum_{h=S}^{N,S_h} \int dz M_h E^h(z) = M_j \qquad \left(\sum_{h=S_h} \int dz M_h \tilde{E}^h(z) = M_j - M_j \right)$ $[\Gamma = \gamma^{i}] \qquad \sum_{h,S_{h}} \int dz M_{h}^{2} D^{\perp(1)h}(z) = 0 \qquad \sum_{hS_{h}} \int dz M_{h}^{2} \tilde{D}^{\perp(1)h}(z) = -\frac{1}{2} \langle \frac{P_{h\perp}^{2}}{z} \rangle$ $f^{(1)}(z) \equiv \int d^{2} P_{hT} \frac{P_{hT}^{2}}{2\Lambda^{2}} f(z, P_{hT})$ accardi@jlab.org

Inclusive DIS with jet correlators

AA, Bacchetta, PLB 773 ('17) 632

Jet correlators: \rightarrow non-asymptotic quark states / dressed quarks

g2 structure function revisited

Integrating SIDIS, and using EOM, Lorentz Invariance Relations:

$$g_{2}(x_{B}) - g_{2}^{WW}(x_{B}) \equiv g_{2}^{quark} \equiv g_{2}^{jet}$$

$$= \frac{1}{2} \sum_{a} e_{a}^{2} \left(g_{2}^{q,\text{tw3}}(x_{B}) + \frac{m_{q}}{M} \left(\frac{h_{1}^{q}}{x} \right)^{\star} (x_{B}) + \frac{M_{j} - m_{q}}{M} \frac{h_{1}^{q}(x_{B})}{M} \right)$$

Consequences:

- h1 accessible in inclusive DIS
 - \leftrightarrow Potentially large signal
- Burkardt-Cottingham sum rule broken

$$\int_0^1 g_2(x) = (M_j - m_q) \int_0^1 dx \, \frac{h_1(x)}{x}$$

- ETL: novel way to measure tensor charge $\int_0^1 x g_2^{q-\bar{q}}(x) = 2 \left(M_j - m_q \right) \int_0^1 dx \, h_1^{q-\bar{q}}(x)$

Measuring the jet correlator

Accardi, Bacchetta, Signori, Radici, in progress

Jet mass M_{iet} can be measured in polarized e⁺ + e⁻:

Needs LT asymmetry in semi-inclusive Lambda production

$$\frac{d\sigma^{L}(e^{+}e^{-} \to \text{jet } h X)}{d\Omega dz} = \frac{3\alpha^{2}}{Q^{2}} \lambda_{e} \sum_{a} e_{a}^{2} \left\{ \frac{C(y)}{2} \lambda_{h} G_{1} + D(y) \left(\mathbf{S}_{T} \right) \cos(\phi_{S}) \frac{2M_{h}}{Q} \left(\frac{G_{T}}{z} + \left(\frac{M_{q} - m_{q}}{M_{h}} H_{1} \right) \right\}$$

Similarly a LU asymmetry in unpolarized dihadron production

accardi@jlab.org

Where can we measure jet correlators?

Can we get a (polarized) **e+ e- collider at JLab / BNL?**

- At JLab12 ? EIC + positron beam ?
- Are **existing facilities** enough?

	BEPC	super KEKB	ILC	JLab/BNL
E beam [GeV]	1.9	4 (e⁻) 7 (e⁻)	250	?
√s [GeV]	3 – 5	10	500	?
polarization	?	maybe	80% e 60% e⁺	YES!

What else?

A new "universal" fits

Chiral-odd collinear sector across processes:

Conclusions

Conclusions

Hadron mass corrections possible in collinear factorization

- Accounts for phase space available for hadronisation
 - with non-zero "virtuality" for fragmenting quark: $v'^2 = m_h^2/\zeta_h$
- But needs to go beyond the usual "parton model approximation"
- Proposed scheme phenomenologically successful!

HMCs non negligible

- Kaon ratios at H & C largely reconciled
- Pion corrections large only at Jlab; systematic shape difference at H, C
- Need to account for HMCs in fits
- "Inclusive" fragmentation and jet correlator:
 - <u>Novel FF sum rules</u>
 - <u>New phenomenology</u>
 - χSB from SIDIS, tensor charge in DIS, SIA !!
 - ...and more possible, the door is open...

Phase space limitations

Guerrero et al., JHEP 09 (2015) 169

Figure 2. Finite- Q^2 fragmentation variable ζ_h versus z_h for the semi-inclusive production of (a) pions, $h = \pi$ and (b) kaons, h = K, at fixed values of $x_B = 0.3$ (blue curves) and 0.6 (red curves) for $Q^2 = 1$ (solid curves) and 5 GeV² (dashed curves). The curves are shown only in the kinematically allowed z_h regions, and the boundaries between the current ($\zeta_h > \zeta_h^{(0)}$) and target ($\zeta_h < \zeta_h^{(0)}$) fragmentation regions are indicated by the open circles.

Current vs. target fragmentation regions Guerrero et al., JHEP 09 (2015) 169

Figure 9. Ratio of spin-averaged cross sections with and without HMCs for the production of (a) pions and (b) kaons, for different choices of the scattered parton invariant mass \tilde{k}'^2 at $Q^2 = 1 \text{ GeV}^2$ (thick lines) and $Q^2 = 5 \text{ GeV}^2$ (thin lines) for $x_B = 0.3$. The open circles denote the boundary between the target and current fragmentation regions.

Current vs. target fragmentation regions Guerrero, Accardi, PRD 97 (2018) 114012

Baryon in in target vs. current region:

Kaon multiplicity Chung-Wen Kao, talk at DIS 2018

Kaon multiplicity

NLO vs. LO:

- ~20% higher (cancels in ratios)
- slight change of shape

(Refitted) DSS2017 vs. HERMES

HERMES & COMPASS data: direct comparison

