

News from DSS

Rodolfo Sassot

Universidad de Buenos Aires

FF2019 - Durham, March 14th, 2019

DSS FFs framework

D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

DSS FFs framework

from DSS07 to DSS14, DSS17, ... D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

D. de Florian, M. Epele, R. Hernandez-Pinto, RS, M. Stratmann arXiv:1410.6027 arXiv:1702.06353

DSS FFs framework

from DSS07 to DSS14, DSS17, ... D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

D. de Florian, M. Epele, R. Hernandez-Pinto, RS, M. Stratmann arXiv:1410.6027 arXiv:1702.06353

theory input issues

DSS FFs framework

from DSS07 to DSS14, DSS17, ...

theory input issues NNLO corrections D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

D. de Florian, M. Epele, R. Hernandez-Pinto, RS, M. Stratmann arXiv:1410.6027 arXiv:1702.06353

D.Anderle M. Stratmann, F. Ringer arXiv:1510.05845

DSS FFs framework

from DSS07 to DSS14, DSS17, ...

theory input issues

NNLO corrections heavy quark mass corrections D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

D. de Florian, M. Epele, R. Hernandez-Pinto, RS, M. Stratmann arXiv:1410.6027 arXiv:1702.06353

D.Anderle M. Stratmann, F. Ringer arXiv:1510.05845

M. Epele, C. García Canal, RS arXiv:1604.08427 arXiv:1807.07495

DSS FFs framework

from DSS07 to DSS14, DSS17, ...

theory input issues

NNLO corrections heavy quark mass corrections input PDFs dependence D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

D. de Florian, M. Epele, R. Hernandez-Pinto, RS, M. Stratmann arXiv:1410.6027 arXiv:1702.06353

> D.Anderle M. Stratmann, F. Ringer arXiv:1510.05845 M. Epele, C. García Canal, RS I. Borsa, RS, M. Stratmann arXiv:1708.01630

DSS FFs framework

from DSS07 to DSS14, DSS17, ...

theory input issues

NNLO corrections heavy quark mass corrections input PDFs dependence D. de Florian, RS, M. Stratmann arXiv:hep-ph/0703242 arXiv:0707.1506

D. de Florian, M. Epele, R. Hernandez-Pinto, RS, M. Stratmann arXiv:1410.6027 arXiv:1702.06353

> D.Anderle M. Stratmann, F. Ringer arXiv:1510.05845 M. Epele, C. García Canal, RS I. Borsa, RS, M. Stratmann arXiv:1708.01630

combined PDFs and FFs from EIC

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

SIA

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

cleaner: only FFs 'easier' HO QCD very precise data

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

cleaner: only FFs 'easier' HO QCD very precise data

only information on $[D_q^H(z,Q^2) + D_{\bar{q}}^H(z,Q^2)]$ 'flavor singlet' $\Sigma \equiv D_u^H + D_{\bar{u}}^H + D_d^H + D_{\bar{d}}^H + D_s^H + D_{\bar{s}}^H + ...$ gluon suppression $\frac{\alpha_s(Q^2)}{2\pi}D_g^H(z,Q^2)$

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

'easier' HO QCD very precise data

charge & flavor discrimination

only information on $D_q^H(z,Q^2) + D_{\bar{q}}^H(z,Q^2)$ 'flavor singlet' $\Sigma \equiv D_u^H + D_{\overline{u}}^H + D_d^H + D_{\overline{d}}^H + D_{\overline{s}}^H + D_{\overline{s}}^H + \dots$ $\frac{\alpha_s(Q^2)}{2\pi}D_g^H(z,Q^2)$ gluon suppression

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

a global NLO FFs set validated by the largest set of unpolarized data

for the DSSV07 helicity PDFs

only information on $[D_q^H(z,Q^2) + D_{\bar{q}}^H(z,Q^2)]$ 'flavor singlet' $\Sigma \equiv D_u^H + D_{\bar{u}}^H + D_d^H + D_{\bar{d}}^H + D_s^H + D_{\bar{s}}^H + ...$ gluon suppression $\frac{\alpha_s(Q^2)}{2\pi}D_g^H(z,Q^2)$ PDFs uncertainties x PDFs uncertainties no NNLO yet and for a long time

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

$$D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$$

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

$$D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$$

discard redundant parameters

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

$$D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$$

discard redundant parameters

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$

discard redundant parameters

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

adopt a minimizing function

$$\chi^2 = \sum_j \sum_i \left(\frac{\sigma_i^{exp} - \mathcal{N}_j \sigma_i^{th}}{\Delta \sigma_i^{exp}} \right)^2 + \sum_j \left(\frac{1 - \mathcal{N}_j}{\Delta \sigma_j^{exp}} \right)^2$$

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$

discard redundant parameters

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

adopt a minimizing function

$$\chi^2 = \sum_j \sum_i \left(\frac{\sigma_i^{exp} - \mathcal{N}_j \sigma_i^{th}}{\Delta \sigma_i^{exp}} \right)^2 + \sum_j \left(\frac{1 - \mathcal{N}_j}{\Delta \sigma_j^{exp}} \right)^2$$

fit N_j (2007) vs. analytic normalization (2014 and later)

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

discard redundant parameters \wedge D_s^7

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

adopt a minimizing function

$$\chi^2 = \sum_j \sum_i \left(\frac{\sigma_i^{exp} - \mathcal{N}_j \sigma_i^{th}}{\Delta \sigma_i^{exp}} \right)^2 + \sum_j \left(\frac{1 - \mathcal{N}_j}{\Delta \sigma_j^{exp}} \right)^2$$

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$

fit N_j (2007) vs. analytic normalization (2014 and later)

estimate errors with the improved hessian method:

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$

discard redundant parameters

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

adopt a minimizing function

$$\chi^2 = \sum_j \sum_i \left(\frac{\sigma_i^{exp} - \mathcal{N}_j \sigma_i^{th}}{\Delta \sigma_i^{exp}} \right)^2 + \sum_j \left(\frac{1 - \mathcal{N}_j}{\Delta \sigma_j^{exp}} \right)^2$$

fit N_j (2007) vs. analytic normalization (2014 and later)

estimate errors with the improved hessian method:

à la CTEQ: hessian matrix diagonalization and sets

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

discard redundant parameters 🔥

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$ $D_i^{\pi^+}(z, Q_0^2) = N_s z^{\alpha_s} D_{\overline{u}}^{\pi^+}(z, Q_0^2)$

 $D_{u+\overline{u}}^{\pi^+}(z,Q_0^2) = N_{d+\overline{d}} D_{u+\overline{u}}^{\pi^+}(z,Q_0^2)$

adopt a minimizing function

$$=\sum_{j}\sum_{i}\left(\frac{\sigma_{i}^{exp}-\mathcal{N}_{j}\sigma_{i}^{th}}{\Delta\sigma_{i}^{exp}}\right)^{2}+\sum_{j}\left(\frac{1-\mathcal{N}_{j}}{\Delta\sigma_{j}^{exp}}\right)^{2}$$

fit N_j (2007) vs. analytic normalization (2014 and later)

 χ^2

estimate errors with the improved hessian method:

à la CTEQ: hessian matrix diagonalization and sets

~ MSTW-MMHT

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

discard redundant parameters 🔨

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

adopt a minimizing function

$$=\sum_{j}\sum_{i}\left(\frac{\sigma_{i}^{exp}-\mathcal{N}_{j}\sigma_{i}^{th}}{\Delta\sigma_{i}^{exp}}\right)^{2}+\sum_{j}\left(\frac{1-\mathcal{N}_{j}}{\Delta\sigma_{j}^{exp}}\right)^{2}$$

fit \mathcal{N}_j (2007) vs. analytic normalization (2014 and later)

 χ^2

estimate errors with the improved hessian method:

à la CTEQ: hessian matrix diagonalization and sets

~ MSTW-MMHT tolerance criterion

'traditional' fitting strategy, i.e. ~ CTEQ, MMHT,...

assume a 'flexible' parameterization

discard redundant parameters

 $D_{\overline{s}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{s}z^{\alpha_{s}}D_{\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$ $D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2}) = N_{d+\overline{d}}D_{u+\overline{u}}^{\pi^{+}}(z,Q_{0}^{2})$

adopt a minimizing function

$$\chi^2 = \sum_j \sum_i \left(\frac{\sigma_i^{exp} - \mathcal{N}_j \sigma_i^{th}}{\Delta \sigma_i^{exp}} \right)^2 + \sum_j \left(\frac{1 - \mathcal{N}_j}{\Delta \sigma_j^{exp}} \right)^2$$

 $D_i^{\pi^+}(z, Q_0^2) = N_i z^{\alpha_i} \left[(1-z)^{\beta_i} + \gamma_i (1-z)^{\delta_i} \right]$

fit \mathcal{N}_j (2007) vs. analytic normalization (2014 and later)

estimate errors with the improved hessian method:

à la CTEQ: hessian matrix diagonalization and sets

~ MSTW-MMHT tolerance criterion

$$\int_{0}^{\xi_{68}} d\chi^2 \, \frac{(\chi^2)^{N/2 - 1} e^{-\chi^2/2}}{2^{N/2} \Gamma(N/2)} = 0.68$$

 $\xi_{50} \longrightarrow \xi_{68}$

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for
'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs

 \blacktriangleright parameter fitting criterion $\Delta \chi^2 = 1$

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

homework: I. generate a set of pseudo data according to a theory assumption and an arbitrary error

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

homework: I. generate a set of pseudo data according to a theory assumption and an arbitrary error 2. generate and fit replicas of the 'data' with the same theory assumption (a la Emanuele)

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

homework: I. generate a set of pseudo data according to a theory assumption and an arbitrary error 2. generate and fit replicas of the 'data' with the same theory assumption (a la Emanuele) 3. check that the variance of the replicas corresponds precisely to $\Delta \chi^2 = 1$ (i.e. with L.M.)

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

homework: I. generate a set of pseudo data according to a theory assumption and an arbitrary error 2. generate and fit replicas of the 'data' with the same theory assumption (a la Emanuele) 3. check that the variance of the replicas corresponds precisely to $\Delta \chi^2 = 1$ (i.e. with L.M.) 4. fit replicas with a different theory assumption (approximation)

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

homework: I. generate a set of pseudo data according to a theory assumption and an arbitrary error 2. generate and fit replicas of the 'data' with the same theory assumption (a la Emanuele) 3. check that the variance of the replicas corresponds precisely to $\Delta \chi^2 = 1$ (i.e. with L.M.) 4. fit replicas with a different theory assumption (approximation) 5. verify that the variance of the replicas corresponds to $\Delta \chi^2 >> 1$

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

realistic situation: theory approximations / inputs theory uncertainties neglected or unknown

'tolerances'

tolerate (verb)

allow the existence, occurrence or practice of something (that one does not necessarily like or agree with) without interference. accept or endure (someone or something unpleasant or disliked) with forbearance.

ideal situation: experimental errors and correlations well accounted for fitting with perfect theory inputs parameter fitting criterion $\Delta \chi^2 = 1$

realistic situation: theory approximations / inputs theory uncertainties neglected or unknown

illustrative example: NNLO studies

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015

# data	2
# uata	χ^2
in fit	LO
23	15.0
14	9.7
14	10.4
14	5.9
17	19.2
15	7.4
15	8.3
15	8.5
13	8.9
13	5.3
6	1.9
6	4.0
6	8.6
41	108.7
76	11.8
	7.4
288	241.0
	$ \begin{array}{c} \text{in fit} \\ 23 \\ 14 \\ 14 \\ 14 \\ 14 \\ 17 \\ 15 \\ 15 \\ 15 \\ 13 \\ 6 \\ 6 \\ 6 \\ 41 \\ 76 \\ \end{array} $

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015

experiment	data	# data	χ^2
	type	in fit	LO
Sld [40]	incl.	23	15.0
	uds tag	14	9.7
	c tag	14	10.4
	$b \mathrm{tag}$	14	5.9
Aleph $[41]$	incl.	17	19.2
Delphi $[42]$	incl.	15	7.4
	uds tag	15	8.3
	$b \mathrm{tag}$	15	8.5
Opal $[43]$	incl.	13	8.9
TPC $[44]$	incl.	13	5.3
	uds tag	6	1.9
	c tag	6	4.0
	$b \mathrm{tag}$	6	8.6
BABAR $[10]$	incl.	41	108.7
Belle $[9]$	incl.	76	11.8
NORM. SHIFTS			7.4
TOTAL:		288	241.0

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015

experiment	data	# data	χ^2
	type	in fit	LO
Sld [40]	incl.	23	15.0
	uds tag	14	9.7
	c tag	14	10.4
	$b \mathrm{tag}$	14	5.9
Aleph $[41]$	incl.	17	19.2
Delphi $[42]$	incl.	15	7.4
	uds tag	15	8.3
	$b \mathrm{tag}$	15	8.5
Opal $[43]$	incl.	13	8.9
TPC $[44]$	incl.	13	5.3
	uds tag	6	1.9
	c tag	6	4.0
	$b \mathrm{tag}$	6	8.6
BABAR $[10]$	incl.	41	108.7
Belle $[9]$	incl.	76	11.8
NORM. SHIFTS			7.4
TOTAL:		288	241.0
too good: n	o need	of HO?	

illustrative example: NNLO studies

SIA	only
-----	------

experiment	data	# data	χ^2	
-	type	in fit	LO	NLO
Sld [40]	incl.	23	15.0	14.8
	uds tag	14	9.7	18.7
	c tag	14	10.4	21.0
	$b \mathrm{tag}$	14	5.9	7.1
Aleph $[41]$	incl.	17	19.2	12.8
Delphi $[42]$	incl.	15	7.4	9.0
	uds tag	15	8.3	3.8
	$b \mathrm{tag}$	15	8.5	4.5
Opal $[43]$	incl.	13	8.9	4.9
TPC $[44]$	incl.	13	5.3	6.0
	uds tag	6	1.9	2.1
	$c \mathrm{tag}$	6	4.0	4.5
	$b \mathrm{tag}$	6	8.6	8.8
BABAR $[10]$	incl.	41	108.7	54.3
Belle [9]	incl.	76	11.8	10.9
NORM. SHIFTS			7.4	6.8
TOTAL:		288	241.0	190.0
too good: n	o need	of HO?		

illustrative example: NNLO studies

SIA	only
-----	------

experiment	data	# data	χ^2			
	type	in fit	LO	NLO		
Sld [40]	incl.	23	15.0	14.8		
	uds tag	14	9.7	18.7		
	c tag	14	10.4	21.0		
	$b \mathrm{tag}$	14	5.9	7.1		
Aleph $[41]$	incl.	17	19.2	12.8		
Delphi $[42]$	incl.	15	7.4	9.0		
	uds tag	15	8.3	3.8		
	$b \mathrm{tag}$	15	8.5	4.5		
Opal $[43]$	incl.	13	8.9	4.9		
TPC $[44]$	incl.	13	5.3	6.0		
	uds tag	6	1.9	2.1		
	c tag	6	4.0	4.5		
	$b \mathrm{tag}$	6	8.6	8.8		
BABAR $[10]$	incl.	41	108.7	54.3		
Belle $[9]$	incl.	76	11.8	10.9		
NORM. SHIFTS			7.4	6.8		
TOTAL:		288	241.0	190.0		
			$\Delta \gamma_r^2$			
too good n	no nood		$-\Lambda L$	O-NLO		

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015

experiment	data	# data	χ^2		
	type	in fit	LO	NLO	NNLO
Sld [40]	incl.	23	15.0	14.8	15.5
	uds tag	14	9.7	18.7	18.8
	c tag	14	10.4	21.0	20.4
	$b \mathrm{tag}$	14	5.9	7.1	8.4
Aleph $[41]$	incl.	17	19.2	12.8	12.6
Delphi $[42]$	incl.	15	7.4	9.0	9.9
	uds tag	15	8.3	3.8	4.3
	b ag	15	8.5	4.5	4.0
Opal $[43]$	incl.	13	8.9	4.9	4.8
TPC $[44]$	incl.	13	5.3	6.0	6.9
	uds tag	6	1.9	2.1	1.7
	c tag	6	4.0	4.5	4.1
	$b \mathrm{tag}$	6	8.6	8.8	8.6
BABAR $[10]$	incl.	41	108.7	54.3	37.1
Belle [9]	incl.	76	11.8	10.9	11.0
NORM. SHIFTS			7.4	6.8	7.1
TOTAL:		288	241.0	190.0	175.2
too good: n	o need o	of HO?	$\Delta \chi_L^2$	O-NLC	$_{0} = 51?^{\circ}$

illustrative example: NNLO studies

experiment	data	# data	χ^2		
	type	in fit	LO	NLO	NNLO
Sld [40]	incl.	23	15.0	14.8	15.5
	uds tag	14	9.7	18.7	18.8
	c tag	14	10.4	21.0	20.4
	$b \mathrm{tag}$	14	5.9	7.1	8.4
Aleph $[41]$	incl.	17	19.2	12.8	12.6
Delphi $[42]$	incl.	15	7.4	9.0	9.9
	uds tag	15	8.3	3.8	4.3
	$b \mathrm{tag}$	15	8.5	4.5	4.0
Opal $[43]$	incl.	13	8.9	4.9	4.8
TPC $[44]$	incl.	13	5.3	6.0	6.9
	uds tag	6	1.9	2.1	1.7
	$c \mathrm{tag}$	6	4.0	4.5	4.1
	$b \mathrm{tag}$	6	8.6	8.8	8.6
BABAR [10]	incl.	41	108.7	54.3	37.1
Belle $[9]$	incl.	76	11.8	10.9	11.0
NORM. SHIFTS			7.4	6.8	7.1
TOTAL:		288	241.0	190.0	175.2
			Δv^2	0.111	= 51?
too goodin	n nond		$\Delta \chi L$	O-NLC) = 011
100 good: n	io need		4	$\Delta \chi_{NLC}^{2}$	-NNLC

SIA only

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015

experiment	data	# data	χ^2		
	type	in fit	LO	NLO	NNLO
Sld [40]	incl.	23	15.0	14.8	15.5
	uds tag	14	9.7	18.7	18.8
	$c ext{tag}$	14	10.4	21.0	20.4
	$b \mathrm{tag}$	14	5.9	7.1	8.4
Aleph $[41]$	incl.	17	19.2	12.8	12.6
Delphi $[42]$	incl.	15	7.4	9.0	9.9
	uds tag	15	8.3	3.8	4.3
	$b \mathrm{tag}$	15	8.5	4.5	4.0
Opal $[43]$	incl.	13	8.9	4.9	4.8
TPC $[44]$	incl.	13	5.3	6.0	6.9
	uds tag	6	1.9	2.1	1.7
	$c ext{tag}$	6	4.0	4.5	4.1
	$b \mathrm{tag}$	6	8.6	8.8	8.6
BABAR $[10]$	incl.	41	108.7	54.3	37.1
Belle $[9]$	incl.	76	11.8	10.9	11.0
NORM. SHIFTS			7.4	6.8	7.1
TOTAL:		288	241.0	190.0	175.2
			Δv_{τ}^2	0 111	= 51?
too good r	no pood		$\Delta \lambda L$	O-NLC) = 01
	io need		4	$\Delta \chi_{NLC}^{2}$	D-NNLC

SIA only

over-fitting a single data type:

illustrative example: NNLO studies

xperiment	data	# data	χ^2		
_	type	in fit	LO	NLO	NNLO
Sld [40]	incl.	23	15.0	14.8	15.5
	uds tag	14	9.7	18.7	18.8
	$c \mathrm{tag}$	14	10.4	21.0	20.4
	$b \mathrm{tag}$	14	5.9	7.1	8.4
Aleph $[41]$	incl.	17	19.2	12.8	12.6
Delphi [42]	incl.	15	7.4	9.0	9.9
	uds tag	15	8.3	3.8	4.3
	$b \mathrm{tag}$	15	8.5	4.5	4.0
Opal $[43]$	incl.	13	8.9	4.9	4.8
TPC $[44]$	incl.	13	5.3	6.0	6.9
	uds tag	6	1.9	2.1	1.7
	$c \mathrm{tag}$	6	4.0	4.5	4.1
	$b \mathrm{tag}$	6	8.6	8.8	8.6
BABAR [10]	incl.	41	108.7	54.3	37.1
Belle [9]	incl.	76	11.8	10.9	11.0
NORM. SHIFTS			7.4	6.8	7.1
TOTAL:		288	241.0	190.0	175.2
			$\Delta \chi_L^2$	O-NLC	$_{0} = 51?$
too good: r	no need o	of HO?		$\Delta \chi^2_{NLC}$)–NNLC
fitting a single	data type: i	in DSS14	$\chi^2_{SIA}/{ m da}$	ta = 1.3	

SIA only

illustrative example: NNLO studies

experiment	data	#data	χ^2			
	type	in fit	LO	NLO	NNLO	
Sld [40]	incl.	23	15.0	14.8	15.5	
	uds tag	14	9.7	18.7	18.8	
	c tag	14	10.4	21.0	20.4	
	b tag	14	5.9	7.1	8.4	
Aleph $[41]$	incl.	17	19.2	12.8	12.6	
Delphi [42]	incl.	15	7.4	9.0	9.9	
	uds tag	15	8.3	3.8	4.3	
	$b \mathrm{tag}$	15	8.5	4.5	4.0	
Opal [43]	incl.	13	8.9	4.9	4.8	
TPC $[44]$	incl.	13	5.3	6.0	6.9	
	uds tag	6	1.9	2.1	1.7	
	$c \mathrm{tag}$	6	4.0	4.5	4.1	
	$b \mathrm{tag}$	6	8.6	8.8	8.6	
BABAR [10]	incl.	41	108.7	54.3	37.1	
Belle [9]	incl.	76	11.8	10.9	11.0	
NORM. SHIFTS			7.4	6.8	7.1	
TOTAL:		288	241.0	190.0	175.2	
			$\Delta \chi^2_L$	O-NLC	$_{0} = 51??$	
too good: n	o need	of HO?	4	$\Delta \chi^2_{NLC}$	-NNLO	
r-fitting a single data type: in DSS14 $\chi^2_{SIA}/\text{data} = 1.3$						

illustrative example: NNLO studies

40% correction from LO to NLO χ^2 experiment # data data in fit LO NLO NNLO type SLD [40] incl. 2315.515.014.818.8uds tag 149.718.7 $c \, \mathrm{tag}$ 1410.421.020.45.98.4147.1 $b \, tag$ ALEPH [41] incl. 1719.212.812.6Delphi [42] 9.09.9incl. 157.4uds tag 158.3 3.84.3154.54.08.5 $b \, tag$ Opal [43] 138.9 4.94.8incl. TPC [44] incl. 135.36.06.92.11.7uds tag 6 1.94.54.1 $c \, tag$ 6 4.08.8 8.6 $b \, tag$ 8.6 6 BABAR [10]108.754.337.1incl. 41 Belle [9] 7610.911.0incl. 11.8NORM. SHIFTS 7.46.87.1**TOTAL:** 288241.0190.0175.2 $\Delta \chi^2_{LO-NLO} = 51??$ too good: no need of HO? over-fitting a single data type: in DSS14 $\chi^2_{SIA}/data = 1.3$

D. Anderle, M. Stratmann, F. Ringer, *Phys. Rev. D* 92, 114010 2015

illustrative example: NNLO studies

SIA only χ^2 experiment # data data in fit LO NLO NNLO type SLD [40] incl. 2315.515.014.818.8uds tag 149.718.7 $c \, \mathrm{tag}$ 1410.421.020.45.98.4147.1 $b \, tag$ ALEPH [41] incl. 1719.212.812.6Delphi [42] 9.09.9incl. 157.4uds tag158.3 3.84.3154.54.08.5 $b \, tag$ Opal [43] 138.9 4.94.8incl. TPC [44] 135.36.06.9incl. 2.11.7uds tag 6 1.94.54.1 $c \, tag$ 6 4.08.8 8.6 $b \, tag$ 8.6 6 BABAR [10]108.754.337.1incl. 41 Belle [9] 7610.911.0incl. 11.8NORM. SHIFTS 7.46.87.1**TOTAL:** 288241.0190.0175.2 $\Delta \chi^2_{LO-NLO} = 51??$ too good: no need of HO? $\Delta \chi^2_{NLO-NNLO} = 14.8??$

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015

over-fitting a single data type: in DSS14 $\chi^2_{SIA}/{
m data}=1.3$

illustrative example: NNLO studies

illustrative example: NNLO studies

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015 **NNLO** NLO LO 2 $Q^2 = 10 \text{ GeV}^2$ $z D_{i}^{\pi^{+}(z,Q^{2})}$ 1.5 0.5 0.5 $u + \bar{u}$ $s + \overline{s}$ 2 **NNLO** DSSI4 NLO 90% CL bands 6 NLO $z D_{i}^{\pi^{+}}(z,Q^{2})$ $\Delta \chi^2 = 62$ Kretzer NLO DSS 14 NLO incl. 90% C.L. band 2 0.5 singlet Σ gluon 0 10 -1 10 -1 1 1 Ζ Ζ

illustrative example: NNLO studies

D. Anderle, M. Stratmann, F. Ringer, Phys. Rev. D 92, 114010 2015 **NNLO** NLO LO 2 $Q^2 = 10 \text{ GeV}^2$ $z D_i^{\pi^+}(z, Q^2)$ 1.5 0.5 0.5 $u + \bar{u}$ $+\overline{s}$ 2 NNLO DSSI4 NLO 90% CL bands 6 \mathbf{O} $z D_{i}^{\pi^{+}(z,Q^{2})}$ $\Delta \chi^2 = 62$ Kretzer NLO 14 NLO ncl. 90% C.L. band SIA only fit can constrain the singlet 2 agree with the full fit at NLO 0.5 singlet Σ gluon SIA only fit at LO outside 90% CL band 0 10 -1 10 -1 1 1 Ζ Ζ

illustrative example: pp

illustrative example: pp

no NNLO calculation yet, no real error estimate large factorization scale dependence at NLO

heavy quarks masses:

heavy quarks masses: who cares?

M. Epele, C. García Canal, RS arXiv:1604.08427 arXiv:1807.07495

heavy quarks masses: who cares?
M. Epele, C. García Canal, RS
arXiv:1604.08427
arXiv:1807.07495

negligible heavy quark contributions to light hadron SIDIS and pp
heavy quarks masses: who cares?
M. Epele, C. García Canal, RS
arXiv:1604.08427
arXiv:1807.07495

negligible heavy quark contributions to light hadron SIDIS and pp what about SIA?

heavy quarks masses: who cares?

M. Epele, C. García Canal, RS arXiv:1604.08427 arXiv:1807.07495

negligible heavy quark contributions to light hadron SIDIS and pp what about SIA? cc and bb pairs copiously produced

heavy quarks masses: who cares?
M. Epele, C. García Canal, RS
negligible heavy quark contributions to light hadron SIDIS and pp

arXiv:1604.08427

arXiv:1807.07495

what about SIA?

cc and bb pairs copiously produced

at LEP energies m_{c} and $m_{b}\,\text{effects}$ are negligible

M. Epele, C. García Canal, RS arXiv:1604.08427 arXiv:1807.07495

negligible heavy quark contributions to light hadron SIDIS and pp what about SIA? cc̄ and bb̄ pairs copiously produced at LEP energies mc and mb effects are negligible but at Belle and Babar?

heavy quarks masses: who cares?

M. Epele, C. García Canal, RS arXiv:1604.08427 arXiv:1807.07495

negligible heavy quark contributions to light hadron SIDIS and pp

what about SIA?

cc̄ and bb̄ pairs copiously produced at LEP energies m_c and m_b effects are negligible but at Belle and Babar?

$$\frac{d\sigma}{dz}^{\rm ZMVFN} = \sum_{i=q,g,h} \hat{\sigma}_i^{\rm ZM}(z,Q) \otimes D_i^{\rm ZM}(z,Q)$$

$$\frac{d\sigma}{dz}^{\mathrm{M}} = \sum_{i=q,g} \hat{\sigma}_{i}^{\mathrm{M}}(Q, m_{h}) \otimes D_{i}^{\mathrm{M}}(Q) + \hat{\sigma}_{h}^{\mathrm{M}}(Q, m_{h}) \otimes D_{h}^{\mathrm{M}}$$

i=q,g

i=q,g

$$\frac{d\sigma}{dz}^{\text{ZMVFN}} = \sum_{i=q,g,h} \hat{\sigma}_i^{\text{ZM}}(z,Q) \otimes D_i^{\text{ZM}}(z,Q)$$
$$\hat{\sigma}_i^{\text{M}}(Q,m_h) \xrightarrow{m_h \to 0} \sum_{j=q,g,h} \hat{\sigma}_j^{\text{ZM}}(Q) \otimes \mathcal{A}_{ji}(Q/m_h)$$
$$\frac{d\sigma}{dz}^{\text{M}} = \sum_{i=q,g,h} \hat{\sigma}_i^{\text{M}}(Q,m_h) \otimes D_i^{\text{M}}(Q) + \hat{\sigma}_h^{\text{M}}(Q,m_h) \otimes D_h^{\text{M}}$$

$$\frac{d\sigma}{dz}^{\mathrm{GMVFN}} = \sum_{i=q,g,h} \hat{\sigma}_{j}^{\mathrm{GM}}(Q,m_{h}) \otimes D_{j}^{\mathrm{GM}}(Q)$$

$$\frac{d\sigma}{dz}^{\text{ZMVFN}} = \sum_{i=q,g,h} \hat{\sigma}_i^{\text{ZM}}(z,Q) \otimes D_i^{\text{ZM}}(z,Q)$$
$$\hat{\sigma}_i^{\text{M}}(Q,m_h) \xrightarrow[m_h \to 0]{} \sum_{j=q,g,h} \hat{\sigma}_j^{\text{ZM}}(Q) \otimes \mathcal{A}_{ji}(Q/m_h)$$
$$\frac{d\sigma}{dz}^{\text{M}} = \sum_{i=q,g} \hat{\sigma}_i^{\text{M}}(Q,m_h) \otimes D_i^{\text{M}}(Q) + \hat{\sigma}_h^{\text{M}}(Q,m_h) \otimes D_h^{\text{M}}$$

$$\frac{d\sigma}{dz}^{\mathrm{GMVFN}} = \sum_{i=q,g,h} \hat{\sigma}_{j}^{\mathrm{GM}}(Q,m_{h}) \otimes D_{j}^{\mathrm{GM}}(Q)$$

$$\hat{\sigma}_{j}^{\text{GM}}(Q, m_{h}) = \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{M}}(Q, m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q/m_{h})$$
$$D_{j}^{\text{GM}}(m_{h}) = \sum_{i=q,g,h} \mathcal{A}_{ji}(1) \otimes D_{i}^{\text{M}}(m_{h})$$
$$\leftarrow \text{FONLL}$$

 $\frac{d\sigma}{dz}^{\text{ZMVFN}} = \sum_{i=q,g,h} \hat{\sigma}_i^{\text{ZM}}(z,Q) \otimes D_i^{\text{ZM}}(z,Q)$

$$\frac{d\sigma}{dz}^{\mathrm{M}} = \sum_{i=q,g} \hat{\sigma}_{i}^{\mathrm{M}}(Q, m_{h}) \otimes D_{i}^{\mathrm{M}}(Q) + \hat{\sigma}_{h}^{\mathrm{M}}(Q, m_{h}) \otimes D_{h}^{\mathrm{M}}$$

$$\hat{\sigma}_i^{\mathrm{M}}(Q, m_h) \xrightarrow[m_h \to 0]{} \sum_{j=q,g,h} \hat{\sigma}_j^{\mathrm{ZM}}(Q) \otimes \mathcal{A}_{ji}(Q/m_h)$$

 $\hat{\sigma}_{j}^{\text{GM}} \longrightarrow \hat{\sigma}_{j}^{\text{GM}^{*}} = (1 - f(Q)) \hat{\sigma}_{j}^{\text{M}} + f(Q) \hat{\sigma}_{j}^{\text{GM}}$ e.g. $f(Q) = 1 - 2m_{h}/Q$

$$\begin{aligned} \frac{d\sigma}{dz}^{\text{ZMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{ZM}}(z,Q) \otimes D_{i}^{\text{ZM}}(z,Q) \\ \frac{d\sigma}{dz}^{\text{M}} &= \sum_{i=q,g,g} \hat{\sigma}_{i}^{\text{M}}(Q,m_{h}) \otimes D_{i}^{\text{M}}(Q) + \hat{\sigma}_{h}^{\text{M}}(Q,m_{h}) \otimes D_{h}^{\text{M}} \\ \frac{d\sigma}{dz}^{\text{GMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) \otimes D_{j}^{\text{GM}}(Q) \\ \frac{d\sigma}{dz}^{\text{GMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) \otimes D_{j}^{\text{GM}}(Q) \\ \frac{d\sigma}{dz}^{\text{GMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) \otimes D_{j}^{\text{GM}}(Q) \\ \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q/m_{h}) \\ \frac{\sigma}{\sigma}_{j}^{\text{GM}}(Q,m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{M}}(Q,m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q/m_{h}) \\ \frac{\sigma}{\sigma}_{j}^{\text{GM}}(m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM}}(m_{h}) \\ \frac{\sigma}{\sigma}_{i}^{\text{GM}}(m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM}}(m_{h}) \\ \frac{\sigma}{\sigma}_{j}^{\text{GM}}(m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM}}(m_{h}) \\ \frac{\sigma}{\sigma}_{j}^{\text{GM}}(m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM}}(m_{h}) \\ \frac{\sigma}{\sigma}_{i}^{\text{GM}}(m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM$$

TOTAL:

966.4

875.8

924

$$\begin{split} \frac{d\sigma}{dz}^{\text{ZMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{ZM}}(z,Q) \otimes D_{i}^{\text{ZM}}(z,Q) \\ \frac{d\sigma}{dz}^{\text{M}} &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{M}}(Q,m_{h}) \otimes D_{i}^{\text{M}}(Q) + \hat{\sigma}_{h}^{\text{M}}(Q,m_{h}) \otimes D_{h}^{\text{M}} \\ \frac{d\sigma}{dz}^{\text{GMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) \otimes D_{j}^{\text{GM}}(Q) \\ \frac{d\sigma}{dz}^{\text{GMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{j}^{\text{GM}}(Q,m_{h}) \otimes D_{j}^{\text{GM}}(Q) \\ \frac{d\sigma}{dz}^{\text{GMVFN}} &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM}}(Q,m_{h}) \otimes D_{j}^{\text{GM}}(Q) \\ \frac{\sigma}{\sigma}_{j}^{\text{GM}}(Q,m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{GM}}(Q,m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q/m_{h}) \\ \frac{\sigma}{\sigma}_{j}^{\text{CM}}(Q,m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{M}}(Q,m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q/m_{h}) \\ \frac{\sigma}{\sigma}_{j}^{\text{CM}}(m_{h}) &= \sum_{i=q,g,h} \hat{\sigma}_{i}^{\text{CM}}(Q,m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q/m_{h}) \\ \frac{\sigma}{\sigma}_{i}^{\text{CM}}(Q,m_{h}) \otimes \mathcal{A}_{ij}^{-1}(Q,m_{h}) \otimes$$

$\frac{d\sigma}{dz}^{\text{ZMVFN}} = \sum_{i=q,g,h} \hat{\sigma}_i^{\text{ZM}}(z,Q) \otimes D_i^{\text{ZM}}(z,Q)$	$\hat{\sigma}^{\mathrm{M}}_i(Q,m_h$	$\left(\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \rightarrow \sum_{j=q,g} $	$\hat{\sigma}^{ ext{ZM}}_{j}$	$(Q)\otimes$	$ ightarrow \mathcal{A}_{ji}($	$Q/m_h)$
$\frac{d\sigma}{dz}^{\mathrm{M}} = \sum_{i=q,g} \hat{\sigma}_i^{\mathrm{M}}(Q, m_h) \otimes D_i^{\mathrm{M}}(Q) + \hat{\sigma}_h^{\mathrm{M}}(Q, m_h) \otimes D_h^{\mathrm{M}}$		norm	alizat	cions			
	experiment	data	#data	ZM	VFN	GM	VFN
$d\sigma^{\rm GMVFN}$ $\sum \Delta GM(O, m) \otimes DGM(O)$		type	in fit	N_i	χ^2	N_i	χ^2
$\frac{dz}{dz} = \sum \sigma_j^{-} (Q, m_h) \otimes D_j^{-} (Q)$	ALEPH $[23]$ DADAD $[12]$	incl.	22	0.968	21.6	0,994	23.3
i=q,g,h	DADAR [15] Belle [14]	incl.	39 78	1.019 1 044	19.5	1.002	11.0
·**	Delphi [24]	incl.	17	0.978	6.7	1.013	9.3
	[]	uds tag	17	0.978	20.8	1.003	9.5
		$b \mathrm{tag}$	17	0.978	10.5	1.003	7.8
$\hat{\sigma}_{i}^{\mathrm{GM}}(Q, m_{h}) = \sum \hat{\sigma}_{i}^{\mathrm{M}}(Q, m_{h}) \otimes \mathcal{A}_{ii}^{-1}(Q/m_{h})$	Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
$\int (\mathbf{c}) (\mathbf{c}) (\mathbf{n}) = \int (\mathbf{c}) ($	Sld $[26]$	incl.	28	0.938	28.0	0.963	9.5
i=q,g,n		uds tag	17	0.938	21.3	0.963	11.3
$D_{\rm GM}^{\rm GM}(m_h) = \sum A_{ii}(1) \otimes D_{\rm M}^{\rm M}(m_h)$		c ag	17	0.938	34.0	0.963	19.8
\mathcal{L}_{j} (\mathcal{M}_{n}) $\sum_{i=1}^{n} \mathcal{C}_{ji}(1) \otimes \mathcal{L}_{i}$ (\mathcal{M}_{n})	Tpg [97]	b tag	17	0.938	$\frac{11.1}{21.7}$	0.963	9.9
	IPC[21]	nici. uds tag	9	0.997	$\frac{31.7}{2.0}$	1.000	21.9
		c tag	9	0.997	5.9	1.006	4.3
		$b \mathrm{tag}$	9	0.997	9.6	1.006	10.9
$\wedge CM \qquad \wedge CM^* \qquad (\land \land \land \land \land M \qquad \land \land \land \land CM$	Compass [28]	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
$\hat{\sigma}_j^{\text{GW}} \longrightarrow \hat{\sigma}_j^{\text{GW}} = (1 - f(Q)) \ \hat{\sigma}_j^{\text{W}} + f(Q) \ \hat{\sigma}_j^{\text{GW}}$	Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
		π^{\pm} (d)	64	0.980	107.3	0.985	103.7
e . g . $f(Q) = 1 - 2m_h/Q$	Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
	Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
much hetter χ^2	ALICE $[32]$	π^0	11	0.696	33.3	0.700	31.2
	TOTAL:		924		966.4		875.8

	type	111 110	IVi	X	IV_i	X
Aleph $[23]$	incl.	22	0.968	21.6	0.994	23.3
BABAR $[13]$	incl.	39	1.019	76.7	1.002	58.2
Belle $[14]$	incl.	78	1.044	19.5	1.019	11.0
Delphi $[24]$	incl.	17	0.978	6.7	1.003	9.3
	uds tag	17	0.978	20.8	1.003	9.5
	b tag	17	0.978	10.5	1.003	7.8
Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
SLD [26]	incl.	28	0.938	28.0	0.963	9.5
	uds tag	17	0.938	21.3	0.963	11.3
	c tag	17	0.938	34.0	0.963	19.8
	b tag	17	0.938	11.1	0.963	9.9
Tpc $[27]$	incl.	17	0.997	31.7	1.006	27.9
	uds tag	9	0.997	2.0	1.006	2.0
	c tag	9	0.997	5.9	1.006	4.3
	$b \mathrm{tag}$	9	0.997	9.6	1.006	10.9
Compass [28]	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
	π^{\pm} (d)	64	0.980	107.3	0.985	103.7
Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
ALICE $[32]$	π^0	11	0.696	33.3	0.700	31.2
TOTAL:		924		966.4		875.8

		experiment	data	#data	ZMV	/FN	GM	VFN
			type	in fit	N_i	χ^2	N_i	χ^2
		Aleph $[23]$	incl.	22	0.968	21.6	0.994	23.3
		BABAR $[13]$	incl.	39	1.019	76.7	1.002	58.2
		Belle $[14]$	incl.	78	1.044	19.5	1.019	11.0
		Delphi $[24]$	incl.	17	0.978	6.7	1.003	9.3
			uds tag	17	0.978	20.8	1.003	9.5
			b tag	17	0.978	10.5	1.003	7.8
		Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
		Sld $[26]$	incl.	28	0.938	28.0	0.963	9.5
Belle: (data - theory)/theory	BaBar: (data - theory)/theory		uds tag	17	0.938	21.3	0.963	11.3
- h			c tag	17	0.938	34.0	0.963	19.8
0.1			b tag	17	0.938	11.1	0.963	9.9
		TPC $[27]$	incl.	17	0.997	31.7	1.006	27.9
			uds tag	9	0.997	2.0	1.006	2.0
	╢╢╷╷╷╷╷╷╷╷ [╷] ╷╹╹╹ ╸ ╸╸╸╸╹╵╵╵╵ [┥] ┥┽┿┿┿┿┿┿┿┿┿		c tag	9	0.997	5.9	1.006	4.3
			$b \mathrm{tag}$	9	0.997	9.6	1.006	10.9
		Compass $[28]$	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
- • GMVFN scheme	• GMVFN scheme	Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
-0.1 \sim ZMVFN scheme	• ZMVFN scheme		π^{\pm} (d)	64	0.980	107.3	0.985	103.7
relative exp. error	relative exp. error	Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
68 and 90 % C.L. uncertainty	68 and 90 % C.L. uncertainty	Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
		Alice $[32]$	π^0	11	0.696	33.3	0.700	31.2
0.2 0.4 0.8 Z	0.2 0.4 0.8 Z	TOTAL:		924		966.4		875.8

experiment	data	# data	ZMVFN		GMVFN	
experiment	tata	# uata	N 2		M	2
1 [22]	type	in nt	$\frac{N_i}{2}$	<u> </u>	IV _i	χ
Aleph $[23]$	incl.	22	0.968	21.6	0.994	23.3
BABAR $[13]$	incl.	39	1.019	76.7	1.002	58.2
Belle $[14]$	incl.	78	1.044	19.5	1.019	11.0
Delphi $[24]$	incl.	17	0.978	6.7	1.003	9.3
	uds tag	17	0.978	20.8	1.003	9.5
	b tag	17	0.978	10.5	1.003	7.8
Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
Sld [26]	incl.	28	0.938	28.0	0.963	9.5
	uds tag	17	0.938	21.3	0.963	11.3
	$c \mathrm{tag}$	17	0.938	34.0	0.963	19.8
	b tag	17	0.938	11.1	0.963	9.9
TPC $[27]$	incl.	17	0.997	31.7	1.006	27.9
	uds tag	9	0.997	2.0	1.006	2.0
	$c \mathrm{tag}$	9	0.997	5.9	1.006	4.3
	$b \mathrm{tag}$	9	0.997	9.6	1.006	10.9
Compass [28]	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
	π^{\pm} (d)	64	0.980	107.3	0.985	103.7
Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
ALICE [32]	π^0	11	0.696	33.3	0.700	31.2
TOTAL:		924		966.4		875.8

experiment	data	# data	ZM	VFN	GM	VFN
	type	in fit	N_i	χ^2	N_i	χ^2
Aleph $[23]$	incl.	22	0.968	21.6	0.994	23.3
BABAR [13]	incl.	39	1.019	76.7	1.002	58.2
Belle $[14]$	incl.	78	1.044	19.5	1.019	11.0
Delphi $[24]$	incl.	17	0.978	6.7	1.003	9.3
	uds tag	17	0.978	20.8	1.003	9.5
	b tag	17	0.978	10.5	1.003	7.8
Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
SLD [26]	incl.	28	0.938	28.0	0.963	9.5
	uds tag	17	0.938	21.3	0.963	11.3
	c tag	17	0.938	34.0	0.963	19.8
	b tag	17	0.938	11.1	0.963	9.9
TPC $[27]$	incl.	17	0.997	31.7	1.006	27.9
	uds tag	9	0.997	2.0	1.006	2.0
	c tag	9	0.997	5.9	1.006	4.3
	b tag	9	0.997	9.6	1.006	10.9
Compass [28]	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
	π^{\pm} (d)	64	0.980	107.3	0.985	103.7
Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
ALICE $[32]$	π^0	11	0.696	33.3	0.700	31.2
TOTAL:		924		966.4		875.8

charm changes significantly

charm changes significantly light flavors constrained by sidis

experiment	data	#data	ZMVFN		GM	VFN
	type	in fit	N_i	χ^2	N_i	χ^2
Aleph $[23]$	incl.	22	0.968	21.6	0.994	23.3
BABAR $[13]$	incl.	39	1.019	76.7	1.002	58.2
Belle $[14]$	incl.	78	1.044	19.5	1.019	11.0
Delphi $[24]$	incl.	17	0.978	6.7	1.003	9.3
	uds tag	17	0.978	20.8	1.003	9.5
	b tag	17	0.978	10.5	1.003	7.8
Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
SLD [26]	incl.	28	0.938	28.0	0.963	9.5
	uds tag	17	0.938	21.3	0.963	11.3
	c tag	17	0.938	34.0	0.963	19.8
	b tag	17	0.938	11.1	0.963	9.9
Tpc $[27]$	incl.	17	0.997	31.7	1.006	27.9
	uds tag	9	0.997	2.0	1.006	2.0
	c tag	9	0.997	5.9	1.006	4.3
	$b \mathrm{tag}$	9	0.997	9.6	1.006	10.9
Compass $[28]$	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
	π^{\pm} (d)	64	0.980	107.3	0.985	103.7
Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
ALICE [32]	π^0	11	0.696	33.3	0.700	31.2
TOTAL:		924		966.4		875.8

charm changes significantly light flavors constrained by sidis bottom constrained by high Q

experiment	data	# data	ZMVFN		GM	VFN
	type	in fit	N_i	χ^2	N_i	χ^2
Aleph $[23]$	incl.	22	0.968	21.6	0.994	23.3
BABAR $[13]$	incl.	39	1.019	76.7	1.002	58.2
Belle $[14]$	incl.	78	1.044	19.5	1.019	11.0
Delphi $[24]$	incl.	17	0.978	6.7	1.003	9.3
	uds tag	17	0.978	20.8	1.003	9.5
	b tag	17	0.978	10.5	1.003	7.8
Opal $[25]$	incl.	21	0.946	27.9	0.970	15.9
SLD [26]	incl.	28	0.938	28.0	0.963	9.5
	uds tag	17	0.938	21.3	0.963	11.3
	c tag	17	0.938	34.0	0.963	19.8
	b tag	17	0.938	11.1	0.963	9.9
Tpc $[27]$	incl.	17	0.997	31.7	1.006	27.9
	uds tag	9	0.997	2.0	1.006	2.0
	c tag	9	0.997	5.9	1.006	4.3
	$b \mathrm{tag}$	9	0.997	9.6	1.006	10.9
Compass $[28]$	π^{\pm} (d)	398	1.003	378.7	1.008	382.9
Hermes [29]	π^{\pm} (p)	64	0.981	74.0	0.986	69.9
	π^{\pm} (d)	64	0.980	107.3	0.985	103.7
Phenix [30]	π^0	15	1.174	14.3	1.167	14.4
Star [31]	π^{\pm}, π^{0}	38	1.205	31.2	1.202	33.8
ALICE [32]	π^0	11	0.696	33.3	0.700	31.2
TOTAL:		924		966.4		875.8

not so determinant in DSS07: MRST04 vs CTEQ6

not so determinant in DSS07: MRST04 vs CTEQ6

improved PDFs and new SIA and SIDIS data

not so determinant in DSS07: MRST04 vs CTEQ6

improved PDFs and new SIA and SIDIS data

not so determinant in DSS07: MRST04 vs CTEQ6

improved PDFs and new SIA and SIDIS data

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

avoid cumbersome minimization of a large number of parameters
reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

avoid cumbersome minimization of a large number of parameters keep track of the effect of less inclusive data

iterative FFs & PDFs determination:

reweighing instead of full combined PDFs and FFs

avoid cumbersome minimization of a large number of parameters keep track of the effect of less inclusive data

iterative FFs & PDFs determination:

PDFs FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

reweighing instead of full combined PDFs and FFs

 $\chi^2_{FF} = 1271.7$

 $\chi^2_{FF} = 1271.7$

$$\chi^2_{FF} = 1271.7$$
 1041.3

similar results with CT14 replicas

555.9 467.6

434.5

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

events with PYTHIA-6

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

events with PYTHIA-6

10 fb⁻¹ luminosity
E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

```
lepton beam 5 and 20 GeV
proton beam 100 and 250 GeV
```

```
events with PYTHIA-6
```

```
10 fb<sup>-1</sup> luminosity
```

```
Q<sup>2</sup> > I GeV<sup>2</sup>
W<sup>2</sup> > I0 GeV<sup>2</sup>
0.0I < y < 0.95
-3.5 < η < 3.5
pH > 0.5
```

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

```
lepton beam 5 and 20 GeV
proton beam 100 and 250 GeV
```

```
events with PYTHIA-6
```

```
10 fb<sup>-1</sup> luminosity
```

```
Q<sup>2</sup> > I GeV<sup>2</sup>
W<sup>2</sup> > I0 GeV<sup>2</sup>
0.0I < y < 0.95
-3.5 < η < 3.5
pH > 0.5
```

1.4 % overall syst. unc.

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

1.4 % overall syst. unc.

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

1.4 % overall syst. unc.

higher cms energy

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV

cross sections NLO NNPDF3.0 DSS14* and DSS17*

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

```
lepton beam 5 and 20 GeV proton beam 100 and 250 GeV
```

```
events with PYTHIA-6
```

```
10 fb<sup>-1</sup> luminosity
```

```
Q<sup>2</sup> > I GeV<sup>2</sup>
W<sup>2</sup> > I0 GeV<sup>2</sup>
0.01 < y < 0.95
-3.5 < η < 3.5
PH > 0.5
```

1.4 % overall syst. unc.

higher cms energy

cross sections NLO NNPDF3.0 DSS14* and DSS17*

```
* variants based on NNPDF3.0
```

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV events with PYTHIA-6 10 fb⁻¹ luminosity $Q^2 > I \text{ GeV}^2$ $W^2 > I0 \text{ GeV}^2$ $W^2 > I0 \text{ GeV}^2$ 0.01 < y < 0.95 $-3.5 < \eta < 3.5$ pH > 0.5

1.4 % overall syst. unc.

cross sections NLO NNPDF3.0 DSS14* and DSS17*

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

```
lepton beam 5 and 20 GeV
proton beam 100 and 250 GeV
```

```
events with PYTHIA-6
```

```
10 fb<sup>-1</sup> luminosity
```

```
Q<sup>2</sup> > I GeV<sup>2</sup>
W<sup>2</sup> > I0 GeV<sup>2</sup>
0.0I < y < 0.95
-3.5 < η < 3.5
PH > 0.5
```

1.4 % overall syst. unc.

cross sections NLO NNPDF3.0 DSS14* and DSS17*

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV events with PYTHIA-6 10 fb⁻¹ luminosity $Q^2 > I \text{ GeV}^2$ $W^2 > I0 \text{ GeV}^2$ $W^2 > I0 \text{ GeV}^2$ 0.01 < y < 0.95 $-3.5 < \eta < 3.5$ pH > 0.5

1.4 % overall syst. unc.

cross sections NLO NNPDF3.0 DSS14* and DSS17*

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV events with PYTHIA-6 10 fb⁻¹ luminosity Q² > 1 GeV² W² > 10 GeV² 0.01 < y < 0.95 -3.5 < η < 3.5 PH > 0.5

1.4 % overall syst. unc.

cross sections NLO NNPDF3.0 DSSI4* and DSSI7*

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

lepton beam 5 and 20 GeV proton beam 100 and 250 GeV events with PYTHIA-6 10 fb⁻¹ luminosity $Q^2 > I \text{ GeV}^2$ $W^2 > I0 \text{ GeV}^2$ 0.01 < y < 0.95 $-3.5 < \eta < 3.5$ pH > 0.5

1.4 % overall syst. unc.

cross sections NLO NNPDF3.0 DSS14* and DSS17*

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

precision and kinematic coverage for SIDIS (low z, wide range in x_B and Q^2)

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

reweighing of 1000 NNPDF3.0 replicas

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

reweighing of 1000 NNPDF3.0 replicas

reweighing of 10000 DSS14* and DSS17* FFs replicas (derived from Hessian sets)

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

reweighing of 1000 NNPDF3.0 replicas

reweighing of 10000 DSS14* and DSS17* FFs replicas (derived from Hessian sets)

correlation and sensitivity coefficients

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

reweighing of 1000 NNPDF3.0 replicas

reweighing of 10000 DSS14* and DSS17* FFs replicas (derived from Hessian sets)

correlation and sensitivity coefficients

where the data type could (in principle) constrain a PDF or FF

$$\rho\left[f_i, \mathcal{O}\right] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\Delta \mathcal{O} \Delta f_i}$$

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

reweighing of 1000 NNPDF3.0 replicas

reweighing of 10000 DSS14* and DSS17* FFs replicas (derived from Hessian sets)

correlation and sensitivity coefficients

where the data type could (in principle) constrain a PDF or FF

$$\rho\left[f_i, \mathcal{O}\right] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\Delta \mathcal{O} \Delta f_i}$$

where the data set a actually constrain the PDF or FF

$$S[f_i, \mathcal{O}] = \frac{\langle \mathcal{O} \cdot f_i \rangle - \langle \mathcal{O} \rangle \langle f_i \rangle}{\xi \, \Delta \mathcal{O} \Delta f_i} \qquad \qquad \xi \equiv \frac{\delta \mathcal{O}}{\Delta \mathcal{O}} \quad \begin{array}{l} \text{experimental error} \\ \text{induced by PDF/FF} \end{array}$$

E.Aschenauer, I. Borsa, RS, C. van Hulse arXiv:1902.10663

YPRXDB

Please, oh please, don't trust $\Delta\chi^2 = 1$

Please, oh please, don't trust $\Delta \chi^2 = 1$

Please, don't tell me MC sampling is equivalent $\ \Delta\chi^2=1$

Please, oh please, don't trust $\Delta \chi^2 = 1$

Please, don't tell me MC sampling is equivalent $\Delta \chi^2 = 1$

Please, don't trust LO sets (and beware of the NLO)

Please, oh please, don't trust $\Delta \chi^2 = 1$

Please, don't tell me MC sampling is equivalent $\Delta\chi^2 = 1$

Please, don't trust LO sets (and beware of the NLO)

Please, don't tell me that heavy quark masses have no effects
Conclusions:

Please, oh please, don't trust $\Delta \chi^2 = 1$

Please, don't tell me MC sampling is equivalent $\Delta \chi^2 = 1$

Please, don't trust LO sets (and beware of the NLO)

Please, don't tell me that heavy quark masses have no effects

SIDIS can actually constrain PDFs, if existing data do, then EIC...

Conclusions:

Please, oh please, don't trust $\Delta \chi^2 = 1$

Please, don't tell me MC sampling is equivalent $\Delta\chi^2 = 1$

Please, don't trust LO sets (and beware of the NLO)

Please, don't tell me that heavy quark masses have no effects

SIDIS can actually constrain PDFs, if existing data do, then EIC...

not only competitive, but an excellent cross-check for the standard flavor discriminants

Conclusions:

Please, oh please, don't trust $\Delta \chi^2 = 1$

Please, don't tell me MC sampling is equivalent $\Delta\chi^2 = 1$

Please, don't trust LO sets (and beware of the NLO)

Please, don't tell me that heavy quark masses have no effects

SIDIS can actually constrain PDFs, if existing data do, then EIC...

not only competitive, but an excellent cross-check for the standard flavor discriminants

EIC will set a milestone for FFs precision, and their status as precision tools.

Thanks!

 $\sim 1000 \text{ data}$ $\chi^2/d.o.f \sim 1.18$

