Challenges and recent progress in SIDIS

Nobuo Sato ODU/JLab

Workshop on Novel Probes of the Nucleon Structure in SIDIS, e+e- and pp (FF2019) Duke University Durham, 2019

Outline

Recent progress in SIDIS large p_T

- Gonzalez-Hernandez, Rogers, NS, Wang (PRD98 2018)
- Wang, Gonzalez-Hernandez, Rogers, NS (arXiv:1903.01529 2019)

New developments to identify SIDIS regions

- Boglione, Collins, Gamberg, Gonzalez-Hernandez, Rogers, NS (PLB 766 2017)
- Boglione, Gamberg, Gordon, Gonzalez-Hernandez, Prokudin, Rogers, NS (in preparation)

QED corrections

Recent progress in SIDIS large p_T

Breit frame

 $q_{\rm T}/Q = (p_h^\perp/z)/Q \rightarrow {\rm scale \ separation}$

Toy example

Existing phenomenology

- \blacksquare These analyses used only W (Gaussian, CSS) \rightarrow no $\rm FO$ nor $\rm ASY$
- \blacksquare Samples with $q_{\rm T}/Q \sim 1.63$ have been included
- \blacksquare BUT TMDs are only valid for $q_{\rm T}/Q \ll 1$!

FO @ LO predictions (DSS07) Gonzalez, Rogers, NS, Wang PRD98 (2018)

Trouble with large transverse momentum

$$\mathbf{FO} = \sum_{q} e_q^2 \int_{\frac{q_T^2}{Q^2} \frac{xz}{1-z} + x}^{1} \frac{d\xi}{\xi - x} H(\xi) \mathbf{f}_q(\xi, \mu) \mathbf{d}_q(\zeta(\xi), \mu) + O(\alpha_S^2) + O(m^2/q^2)$$

+ FFs needs to be updated?

FO @ LO predictions (DSS07) Gonzalez, Rogers, NS, Wang PRD98 (2018)

FO @ LO predictions (JAM18) Gonzalez, Rogers, NS, Wang PRD98 (2018)

Trouble with large transverse momentum

$$\mathbf{FO} = \sum_{q} e_q^2 \int_{\frac{q_T}{Q^2} \frac{xz}{1-z} + x}^{1} \frac{d\xi}{\xi - x} H(\xi) \mathbf{f}_q(\xi, \mu) \mathbf{d}_q(\zeta(\xi), \mu) + O(\alpha_S^2) + O(m^2/q^2)$$

+ $O(\alpha_S^2)$ corrections might be important

order α_S^2 corrections to FO

- There are strong indications that order \(\alpha_S^2\) corrections are very important
- An order of magnitude correction at small p_T.
- As a sanity check, we need to have an independent calculation

$O(\alpha_S^2)$ calculation (Wang, Gonzalez-Hernandes, Rogers, NS - arXiv:1903.01529)

$$W^{\mu\nu}(P,q,P_H) = \int_{x-}^{1+} \frac{d\xi}{\xi} \int_{z-}^{1+} \frac{d\zeta}{\zeta^2} \hat{W}_{ij}^{\mu\nu}(q,x/\xi,z/\zeta) f_{i/P}(\xi) d_{H/j}(\zeta)$$

$$\{\mathbf{P}_{g}^{\mu\nu}\hat{W}_{\mu\nu}^{(N)};\mathbf{P}_{PP}^{\mu\nu}\hat{W}_{\mu\nu}^{(N)}\} \equiv \frac{1}{(2\pi)^{4}} \int \{|M_{g}^{2\to N}|^{2};|M_{pp}^{2\to N}|^{2}\}\,\mathrm{d}\Pi^{(N)}-\text{Subtractions}$$

Born/Virtual

- $\checkmark~$ Generate all $2\rightarrow 2$ and $2\rightarrow 3$ squared amplitudes
- $\checkmark \quad \mbox{Evaluate } 2 \rightarrow 2 \mbox{ virtual graphs} \\ \mbox{(Passarino-Veltman)}$
- $\checkmark~$ Integrate 3-body PS analytically
- $\checkmark\,$ Check cancellation of IR poles

FO @ LO predictions (JAM18)

FO @ NLO (JAM18)

Understanding the large x (Wang, Gonzalez-Hernandes, Rogers, NS - arXiv:1903.01529)

- Large corrections threshold corrections are observed
- The x at the minimum can be used as an indicator of where such corrections are expected to be large

Understanding the large x (Wang, Gonzalez-Hernandes, Rogers, NS - arXiv:1903.01529)

COMPASS kinematics

- The blue region might receive large threshold corrections
- \blacksquare This can potential explain why the ${\cal O}(\alpha_S^2)$ fail to describe the data at large x

New developments to identify SIDIS regions

SIDIS region indicators

P

$$\begin{split} P_B \\ k_i^{\rm b} &= \left(\frac{Q}{\hat{x}_{\rm N}\sqrt{2}}, \frac{\hat{x}_{\rm N}(k_i^2 + \mathbf{k}_{i,{\rm b},{\rm T}}^2)}{\sqrt{2}Q}, \mathbf{k}_{i,{\rm b},{\rm T}}\right) \\ k_{\rm f}^{\rm b} &= \left(\frac{\mathbf{k}_{\rm f,b,{\rm T}}^2 + k_{\rm f}^2}{\sqrt{2}\hat{z}_{\rm N}Q}, \frac{\hat{z}_{\rm N}Q}{\sqrt{2}}, \mathbf{k}_{\rm f,{\rm b},{\rm T}}\right) \\ k &= k_f - q \end{split}$$

SIDIS region indicators

P

$$P_B$$

$$R_1 \equiv \frac{P_B \cdot k_f}{P_B \cdot k_i} \qquad R_2 \equiv \frac{|k^2|}{Q^2} \qquad R_3 \equiv \frac{|k_X^2|}{Q^2}$$

For TMD factorization to hold one needs

 $R_1, R_2, R_3 \ll 1$

SIDIS region indicators

• Web app is available

- o https://sidis.herokuapp.com/
- o use chrom (slow in safary)
- feedback/questions are welcomed
- it might take few seconds to load be patient

SIDIS regions analysis tool

About: Numerical evaluation of ratios described at arxiv:... Select available apps below:

anp1(3D): R_i vs. (x,b, z,h), anp2(3D): W2_(SID(S), vs. (x,b, z,h) anp4(2D): W2_SID(S, vs. (x,b, O) anp5(2D): x_i vs. (x,b, O) anp6(2D): z_i vs. (x,b, O) anp7(2D): R_i vs. (x,b, O) anp8(2D): rat_exp. vs. (x,b, O) anp9(2D): rat_exp. vs. (x,b, O)

Authors:

N. Sato (ODU/JLab) (nsato@jlab.org)
 S. Gordon (ODU)
 T. Rogers (ODU)

Using the ratios in pheno

 Recall the Bayesian regression paradigm

$$\mathcal{P}(\mathbf{a}|\text{data}) = \mathcal{L}(\mathbf{a}, \text{data})\pi(\mathbf{a})$$

$$E[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\mathbf{a}|\text{data})\mathcal{O}(\mathbf{a}),$$
$$V[\mathcal{O}] = \int d^{n}a \ \mathcal{P}(\mathbf{a}|\text{data}) \left(\mathcal{O}(\mathbf{a}) - E[\mathcal{O}]\right)^{2}$$

The likelihood

$$\mathcal{L}(\mathbf{a}, \text{data}) = \exp\left(-\frac{1}{2}\sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\mathbf{a})}{\delta \text{data}_{i}}\right)^{2}\right)$$

The priors

$$\pi(\mathbf{a}) \propto \Pi_i \theta(a_i^{\min} < a_i < a_i^{\max})$$

Using the ratios in pheno

IDEA: use R_i as priors

 $\pi(R_k) \propto \exp\left(-|R_k|^p\right)$

The full prior becomes

$$\pi(\mathbf{a}) \propto \Pi_i \theta(a_i^{\min} < a_i < a_i^{\max}) \times \Pi_j \exp\left(-\sum_{k=1,2,3} |R_k(\mathbf{a}, \mathbf{b}, \Omega_j)|^p\right) \times \pi(\mathbf{b})$$

- o parameters a enter directly in TMD factorization
- o parameters **b** are other parameters that characterizes additional partonic d.o.f. (i.e. virtualities)

Summary and outlook

- **SIDIS** at large p_T
 - o ${\it O}(\alpha_S^2)$ corrections are important to describe SIDIS at COMPASS
 - o The large x region receives large threshold corrections which can explain the difficulty to describe the data
 - o Inclusion of SIDIS large $p_T \mbox{ data}$ in PDFs/FFs analysis is required

SIDIS region indicators

- New tools to map SIDIS regions (web-app)
- The indicators can be used as Bayesian priors for the regression in TMD phenomenology