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The thermal model puzzle

@ elementary particle collision experiments such as e™ e~ collisions

show some thermal-like features

@ particle multiplicities well described by thermal model
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[Becattini, Casterina, Milov & Satz, EPJC 66, 377 (2010)]

@ conventional thermalization by collisions unlikely

@ more thermal-like features difficult to understand in PyTHIA

[Fischer, Sjostrand (2017)]
@ alternative explanations needed
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QCD strings

==

B A B

particle production from QCD strings
Lund string model (e. g. PYTHIA)
different regions in a string are entangled

subinterval A is described by reduced density matrix

pa=Trpp

reduced density matrix is of mixed state form

could this lead to thermal-like effects?
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Entropy and entanglement

@ consider a split of a quantum system into two A + B

==

B A B
o reduced density operator for system A
pa = Tre{p}
@ entropy associated with subsystem A: entanglement entropy

Sa=—Tra{palnpa}

globally pure state S = 0 can be locally mixed S4 >0

coherent information Iy 4 = S4 — S can be positive
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Microscopic model

QCD in 1+1 dimensions described by 't Hooft model
. . 1
L = =iy (Op — igA L)Y — mithinh; — St F, F"
fermionic fields ¢; with sums over flavor species i =1,..., Ny
SU(NV.) gauge fields A, with field strength tensor F,,
gluons are not dynamical in two dimensions

gauge coupling g has dimension of mass
non-trivial, interacting theory, cannot be solved exactly

spectrum of excitations known for N, — co with g2, fixed
['t Hooft (1974)]
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Schwinger model
e QED in 1+1 dimension

L = —1@‘7“(3“ - Zqu,)wz - z’(/}z’(/}z - p,VFMV

@ geometric confinement
U(1) charge related to string tension ¢ = /20

for single fermion one can bosonize theory exactly
[Coleman, Jackiw, Susskind (1975)]

1 1
5= [ @oval - jao.00.0 - e

mqe

53 cos(Q\fq/)—&-H)}

Schwinger bosons are dipoles ¢ ~ 1))

scalar mass related to U(1) charge by M = q/\/7 = \/20/7
massless Schwinger model m = 0 leads to free bosonic theory
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Transverse coordinates

@ so far dynamics strictly confined to 1+1 dimensions

@ transverse coordinates may fluctuate, can be described by
Nambu-Goto action (hy, = 0, X0, Xnm)

Sng = /dzx\/—dethw {—0’ +.. }

~ /d%\/g{—a — gg‘“’auXi&,Xi + }

@ two additional, massless, bosonic degrees of freedom corresponding
to transverse coordinates X* with ¢ = 1,2
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Ezxpanding string solution 1

@ external quark-anti-quark pair on trajectories z = =+t
e coordinates: Bjorken time T = v/t? — 22, rapidity n = arctanh(z/t)
e metric ds? = —d7? + 12dn?

@ symmetry with respect to longitudinal boosts n — 1 + An
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FExpanding string solution 2

@ Schwinger boson field depends only on 7

¢ =¢(7)
@ equation of motion
926+ 20, + MG — 0.
T

o Gauss law: electric field E = q¢/+/m must approach the U(1) charge
of the external quarks E — ¢, for 7 — 0

(r—04)

- Ve
o(1) — “q

@ solution of equation of motion [Loshaj, Kharzeev (2011)]

3(r) = WZ% (M)
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Gaussian states

o theories with quadratic action often have Gaussian density matrix

o fully characterized by field expectation values

¢(z) = (p(2)), m(z) = (7 (z))

and connected two-point correlation functions, e. g.

(d(2)d(y))e = ($(2)b(y)) — d(x)(y)

o if p is Gaussian, also reduced density matrix p4 is Gaussian
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Functional representation

@ Schrodinger functional representation of quantum field theory

@ pure state |¥) has functional

Vgl = (o|¥)

with field “positions” ¢,,
@ density matrix

pld+, -] = (p+plo-)

o fields and conjugate momenta

Dms Tm = —im

@ canonical commutation relation

[¢ma 7Tn] = iémn
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Symplectic transformations

@ combined field

@ commutation relation as symplectic metric

* 0 11
[Xm?Xn} = ana Q = QT = (_Z]l 0> k)

@ symplectic transformations S,

Xm — Smanv X:n — X:(ST)nma SQST = Qa

have unitary representations on Gaussian states
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Williamson’s theorem and entropy

o Covariance matrix

1 * *
Appn = ) <Xan + XnXm>c

transforms as .
A — SAST £ SAS!

e Williamson's theorem: can find S,,,, such that

A — diag(>\17)\2, .. .,)\1,/\2, .. .),

@ symplectic eigenvalues \; > 0
@ Heisenbergs uncertainty principle: A\; > 1/2
@ von Neumann entropy

s=5{(ved)m(aed)- (v 3 mn- 1)}

e pure state: \; =1/2, 5 =0
12/ 30



Entanglement entropy for Gaussian state

@ entanglement entropy of Gaussian state in region A
[Berges, Floerchinger, Venugopalan, JHEP 1804 (2018) 145]

1
Sa=5Tra {DIn(D?)}

@ operator trace over region A only
@ matrix of correlation functions

(ile@rw)e  ilb(0)d))e
Dia,y) = (—z’<w<x>w<y>>c i<w(x>¢<y>>c>

@ involves connected correlation functions of field ¢(x) and canonically
conjugate momentum field 7(x)

@ expectation value ¢ does not appear explicitly

@ coherent states and vacuum have equal entanglement entropy S4
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Rapidity interval

T = const
n = const
————— region A
region B

o consider rapidity interval (—An/2, An/2) at fixed Bjorken time 7

@ entanglement entropy does not change by unitary time evolution
with endpoints kept fixed

@ can be evaluated equivalently in interval Az = 27 sinh(An/2) at
fixed time ¢ = 7 cosh(An/2)
@ need to solve eigenvalue problem with correct boundary conditions
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Bosonized massless Schwinger model

@ entanglement entropy understood numerically for free massive
scalars [Casini, Huerta (2009)]

@ entanglement entropy density dS/dAn for bosonized massless
Schwinger model (M = \/i%)

ds/dAn
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Conformal limat

@ For M7 — 0 one has conformal field theory limit
[Holzhey, Larsen, Wilczek (1994)]

S(Az) = gln (Az/e) + constant

with small length € acting as UV cutoff.
@ Here this implies

S(r, An) = gln (27 sinh(An/2)/€) + constant

Additive constant not universal but entropy density is

0 c

—>g (A > 1)

Entropy becomes extensive in An !

Conformal charge ¢ = 1 for free massless scalars or Dirac fermions.
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Unwversal entanglement entropy density

o for very early times “Hubble" expansion rate dominates over masses

and interactions

1
H=->M="L n
T Vs

VT

@ theory dominated by free, massless fermions
@ universal entanglement entropy density

ds c

dAn 6
with conformal charge ¢
e for QCD in 1+1 D (gluons not dynamical, no transverse excitations)

C:NCXNf

o from fluctuating transverse coordinates (Nambu-Goto action)

c=N.xNy+2=9+2=11
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Temperature and entanglement entropy

o for conformal fields, entanglement entropy has also been calculated
at non-zero temperature.

o for static interval of length L [Korepin (2004); Calabrese, Cardy (2004)]

1
S(T,1) = gln <7rTe sinh(ﬂLT)) + const
@ compare this to our result in expanding geometry

S(r,An) = gln (2€T sinh(An/2)> + const

@ expressions agree for L = 7An (with metric ds? = —d7? + 72dn?)
and time-dependent temperature

1
T=—
2rT
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Modular or entanglement Hamiltonian 1

t

T =const
n = const

————— region A
region B

o conformal field theory
o hypersurface ¥ with boundary on the intersection of two light cones

o reduced density matrix [Casini, Huerta, Myers (2011), Arias, Blanco, Casini,
Huerta (2017), see also Candelas, Dowker (1979)]

1
pA:—e*K, ZA:Tre*K
Zy

e modular or entanglement Hamiltonian K
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Modular or entanglement Hamiltonian 2

@ modular or entanglement Hamiltonian is local expression

K:/Edzué“,,(ac)T‘“’(x).

@ energy-momentum tensor T+ (z) of excitations
@ vector field
€(2) = F5zlla — )" (@ —p)(a — p)
+ (@ —p)*(g—2)(qg—p) — (¢ —p)"(z —p)g — )]

end point of future light cone ¢, starting point of past light cone p

@ inverse temperature and fluid velocity

ut(x)

€ (x) = () = T
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Modular or entanglement Hamiltonian 3

——— T =const
————— n = const
————— region A

region B

z

o for An — oo: fluid velocity in 7-direction, 7-dependent temperature

h
T(T) = %

o Entanglement between different rapidity intervals alone leads
to local thermal density matrix at very early times !

e Hawking-Unruh temperature in Rindler wedge T'(x) = he/(27x)
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Alternative derivation: mode functions

o fluctuation field ¢ = ¢ — ¢ has equation of motion

1 02

2 1 2_ - 2 —
Ozp(r,m) + —Orp(T,m) + | M” — o p(r,n) =0

@ solution in terms of plane waves

o(r, / K Calk) £, D™ + at (k) £ (r, [k}

@ mode functions as Hankel functions
T kr
£ k) = YT B ()

or alternatively as Bessel functions

N

flr.k) = 2sinh(7k)

J,ik(MT)
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Bogoliubov transformation

@ mode functions are related

(. ) a(k)f(r, k) + B(k) " (7, k
f(r k) =a* (k) f (7, k) = B(R)[*
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@ Bogoliubov coefficients

ek e—mk
alk) = 2sinh(7k) Blk) = 2sinh(7k)

@ vacuum [€2) with respect to a(k) such that a(k)|S2) = 0 contains
excitations with respect to a(k) such that a(k)|€2) # 0 and vice versa
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Role of different mode functions

@ Hankel functions f(7, k) are superpositions of positive frequency
modes with respect to Minkowski time ¢

o Bessel functions f(r, k) are superpositions of positive and negative
frequency modes with respect to Minkowski time ¢

@ at very early time 1/7 > M, m conformal symmetry

ds* = 7% [—dIn(1)? + dn?]

@ Hankel functions f(, k) are superpositions of positive and negative
frequency modes with respect to conformal time In(7)

o Bessel functions f(r, k) are superpositions of positive frequency
modes with respect to conformal time In(7)
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Occupation numbers
@ Minkowski space coherent states have two-point functions
(@ (k)a(k"))e = a(k) 27 3(k — k') = |B(k) | 2 6(k — &)
(a(k)a(k"))e = u(k) 2w §(k + k') = —a* (k)B* (k) 27 6(k + k)
(@' (k)a' (K))e = a*(k) 2 6(k + k') = —a(k)B(k) 2m 6 (k + k')

@ occupation number

A = 18I =

@ Bose-Einstein distribution with excitation energy E = |k|/7 and
temperature

T=—
2T

o off-diagonal occupation number @(k) = —1/(2sinh(7k)) make sure
we still have pure state
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Local description

o consider now rapidity interval (—An/2, An/2)
@ Fourier expansion becomes discrete

1 o0
4 Ul
e =17 D pnc"m0

n=—oo

An/2 1 i 7 i i}

Pn = / dn (n) 5 [6_’"“7 + (—1)%“”“?77}
—An/2 2

@ relation to continuous momentum modes by integration kernel

Ak . a 1 |
Pn = /78111(7"7 - M) nm + nm

o(k)

@ local density matrix determined by correlation functions

{on), (TTn)s (OnPm)es etc.

26 / 30



Emergence of locally thermal state

@ mode functions at early time

_ 1 . .
k) = 7671k1n(7)710(k,M)
f(r. k) oT

@ phase varies strongly with k& for M — 0

0(k, M) = kIn(M/2) + arg(T(1 — ik))

o off-diagonal term @(k) have factors strongly oscillating with %

(o7 K)o (7 K ))e = 278(k — k’)ﬁ
x {[& +n(k)] + cos [2kIn(r) + 20(k, M)] u(k)}

cancel out when going to finite interval !
@ only Bose-Einstein occupation numbers 7i(k) remain
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Physics picture

@ coherent state vacuum at early time contains entangled pairs of
quasi-particles with opposite wave numbers

@ on finite rapidity interval (—An/2, An/2) in- and out-flux of
quasi-particles with thermal distribution via boundaries

o technically limits Ay — oo and M7 — 0 do not commute

e Arn — oo for any finite M7 gives pure state
o Mt — 0 for any finite An gives thermal state with T'=1/(27T)
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model

Particle production in massive Schuinger

[ongoing work with Lara Kuhn, Jiirgen Berges]

s 5
> Z
T T T T T T T
2 0 2 4 6
g

o for expanding strings
@ asymptotic particle number depends on g ~ m/q

@ exponential suppression for large fermion mass g > 1
N m _ m et
o 0SS EATAS L4 055 B TABET 4
A
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Conclusions

o rapidity intervals in an expanding string are entangled
@ at very early times theory effectively conformal

1
—>m,q
-

@ entanglement entropy extensive in rapidity % =5

o determined by conformal charge ¢ = N, x Ny + 2
o reduced density matrix for conformal field theory is of locally thermal
form with temperature
h
T=—
2T
@ asymptotic particle number in massive Schwinger model scales
exponentially with large particle mass

dAN/dy ~ e 7 Vae

@ entanglement could be important ingredient to understand apparent
“thermal effects” in eTe™ and other collider experiments
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Rapidity distribution
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[open (filled) symbols: ete™ (pp), Grosse-Oetringhaus & Reygers (2010)]

o rapidity distribution dN/dn has plateau around midrapidity
@ only logarithmic dependence on collision energy



Fxperimental access to entanglement ¢

@ could longitudinal entanglement be tested experimentally?
o unfortunately entropy density d.S/dn not straight-forward to access

@ measured in ete™ is the number of charged particles per unit
rapidity dN¢,/dn (rapidity defined with respect to the thrust axis)

o typical values for collision energies /s = 14 — 206 GeV in the range

dNep/dn =2 —4

@ entropy per particle S/N can be estimated for a hadron resonance
gas in thermal equilibrium S/N¢, = 7.2 would give

dS/dn ~ 14 — 28

@ this is an upper bound: correlations beyond one-particle functions
would lead to reduced entropy



