Jupyter for ATLAS experiment at BNL's SDCC

DOUG BENJAMIN Argonne National Lab High Energy Physics Division

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Integrating Interactive Jupyter Notebooks at the BNL SDCC

D. Allan, D. Benjamin^{*}, M. Karasawa, K. Li, O. Rind, W. Strecker-Kellogg Brookhaven National Laboratory, *Argonne National Laboratory

SLides from a Talk given $\alpha t CHEP 2019$

Scientific Data and **Computing Center**

BNL Scientific Data & Computing Center (SDCC)

- Located at Brookhaven National Laboratory on Long Island, NY Largest component of the Computational Science Initiative (CSI)
- Serves an increasingly diverse, multi-disciplinary user community: RHIC Tier-0, US ATLAS Tier-1 and Tier-3, Belle-II Tier-1, Neutrino, Astro, LQCD, NSLS-II, CFN, sPHENIX....more than 2000 users from 20+ projects
- Large HTC infrastructure accessed via HTCondor (plus experiment-specific job management layers)
- Growing HPC infrastructure, currently with two production clusters accessed via Slurm
- Limited interactive resources accessed via ssh gateways

- <u>HPC & HTC</u> (parallel vs interlinked, accelerator vs plain-cpu)
 - High-performance systems for GPUs / MPI / accelerators
 - High-throughput systems for big data parallel processing
- <u>Batch & Interactive</u> (working on code/GPUs vs submitting large workflows)
 - Job workflow management
 - Direct development & testing on better hardware

- Must be sufficiently motivated to learn and use batch systems
- Need to buy in to the workflow model: Develop, compile, move data, small-scale run on interactive nodes, full-scale processing on batch

Two modes, Two workflows

Traditional "Interactive SSH + Batch" paradigm places requirements on the users:

Data Analysis As A Service

Project Jupyter exists to develop open-source software, open-standards, and services for interactive computing across dozens of programming languages.

- New paradigm: Jupyter Notebooks (IPython)
 - Expanding the interactive toolset
 - Literate Computing": Combines code, text, equations within a narrative
 - Easy to document, share, and reproduce results; create tutorials...Lower barrier of entry, both for learning curve and user-base
 - Provides a flexible, standardized, platform independent interface through a web browser
 - Can run with no local software installation
 - Many language extensions (kernels) and tools available

Jupyter Service UI

Production Architecture

- ulletof rolling a new backend service
 - both HTC and HPC/GPU, e.g. upcoming ATLAS ML workflows
- Requirements
 - and HPC resource access
 - Satisfy cybersecurity constraints
- Design
 - (e.g. MFA)
 - Scale notebooks via load-balancing as well as via batch systems
 - Automated deployment of multiple hub instances using Puppet
 - Enable access to GPU nodes in a user-friendly way
 - User-specific UI for Slurm spawner support

Goal: leverage already successful pre-existing resources, expertise, and infrastructure (batch) instead

Allow users to leverage any type of computational resource they might need — implies enabling

Expose to the world via unified interface <u>https://jupyter.sdcc.bnl.gov</u> — common solution for HTC

Insert authenticating proxy as frontend to decouple jupyterhub from cybersecurity requirements

Jupyterhub Service Architecture

Frontend Proxy Interface

BROOKHAVEN Scientific Data and SDCC JupyterHub

 \equiv

SDCC JupyterHub

The SDCC offers multiple JupyterHub instance and back-end combinations for different users and accounts. Choose the appropriate option from the instances displayed below.

More information Questions and support

- For Orchestration: a small cluster of directlylaunched jupyter instances
 - HTTP-level Load-balanced from frontend proxy
 - One each on IC and HTCondor shared pool
- For Develop and Test: Use existing batch systems
 - HTCondor and Slurm support running a jupyterlab session as a batch job
 - Containers can enter at batch level to isolate external users or can be based on choice of environment
 - Best way to ensure exclusive, fair access to scarce resources (e.g. GPUs)
 - Open questions: Latency, Cleanup, Starvation

Using Jupyter tools to access local resources

Spawners

Jim Crist edited this page on Jul 16 · 26 revisions

Wiki - Spawners

Custom Spawners for JupyterHub

- BatchSpawner for pawning remote servers using batch systems (Torque, PBS, Slurm, etc)
- Dockerspawner, which actually has two different spawners in it:

 - dockerspawner.SystemUserSpawner, for spawning Docker containers with an environment and home directory for each user
- FargateSpawner for spawning Docker containers on AWS Fargate (ECS)
- ImageSpawner for allowing users to choose which Docker image to spawn.
- KubeSpawner for use with Kubernetes.
- MarathonSpawner for spawning instances on Marathon.
- UCRSpawner for spawning GPU instances on Marathon.
- RemoteSpawner (Archived, no longer maintained)
- SimpleSpawner, for testing purposes.
- SystemdSpawner, spawns notebooks with the isolation / security benefits of containers without the complexity of image management.
- available to you.
- WrapSpawner allows spawner class and options to be chosen at runtime. Includes
- YarnSpawner for spawning instances on an Apache Hadoop/YARN cluster.

Edit New Page

Multifactor Auth

- Using Keycloak MFA tokens

SDCC	³ ⁴ 2 4:17 FreeOTP State 2 4:17 ()	SDCC
Log In	522944 Company VPN jdoe@company.com	Log In
Username or email willsk Password	Evernote john.doe	One-time code
Log In	Facebook John Doe	
	GitHub jdoe	
	252552 Google iohn.doe1987@gmail.com	

Google Authenticator or FreeOTP app Easy setup by scanning QR code first time

Custom Slurm Spawner Interface

* For form spawner code see https://github.com/fubarwrangler/sdcc_jupyter

Adding containers to the mix

- Use of the batch spawn allows for the use of containers
- Singularity v3.4 is used at SDCC
 - Need to convert Docker images to Singularity images
- Load the images onto local shared file system
- Custom Slurm spawner interface is extendable to pickup container location from shared file system
- Should be straight forward to use EIC containers.

Challenges of Experiment Environments

- Whose problem is setting up the environments?

Work for a software librarian

Kernel Customization

• When you get a session (start a notebook-server), which environment? Customization at the kernel level or via notebook-server container

> bash-4.2\$ cat setup.sh #! /usr/bin/env bash

RELEASE=/cvmfs/belle.cern.ch/sl7/releases/release-02-00-00 unset PYTHONPATH export BELLE2_NO_TOOLS_CHECK=TRUE source /cvmfs/belle.cern.ch/sl7/tools/b2setup \$RELEASE

python will be in the anaconda2 directory SINGULARITYENV_PATH=\${PATH} SINGULARITYENV_LD_LIBRARY_PATH=\${LD_LIBRARY_PATH} /usr/bin/singularity exec -B /direct /u0b/hollowec/singularity/rhic_sl7_ext.simg /u0b/software/anaconda3/bin/python -m ipykernel_launcher \$@

Custom Container

Orchestration: Integrating Jupyter with Compute

- How to make it easier to use compute from Jupyter?
 - HTMap library from condor
 - Dask / IPyParallel / Parsl etc...
- Goal: abstract away the fact that you are using a batch system at all
 - Either through trivial substitutes
 - map() \rightarrow htmap()
 - Or through cell "magics"
 - %slurm or equivalent
 - Or via nice pythonic decorators that submit to batch systems (e.g. Dask-jobqueue)


```
from condormap import condormap
      import collections
      import numpy
      # Sample function
      def logistic(r, len=10):
         d = collections.deque(maxlen=len)
 8
         x = 0.4
 9
         for _ in xrange(5 * 10**7):
10
             x = x * r * (1.0 - x)
11
             d.append(x)
12
         return list(d)
13
14
15
      for k, d in condormap(logistic, numpy.arange(3.5, 3.6, 0.01), withdata=True):
16
         print sorted(d)
17
         t = set(round(x, 5) for x in d)
18
         print k, "Mode ", len(t)
19
```


Conclusions

- US ATLAS worked with BNL SDCC to develop a Jupyter platform for Scientific analysis. That has grown beyond just HEP.
- The SDCC at BNL is deploying a Jupyterhub infrastructure enabling scientists from multiple disciplines to access our diverse HTC and HPC computing resources
- System designed to meet facility requirements with minimal impact on the backend
- Built-in support for experiment-based computing environment with a number of flexible access modes and workflows
- Continuing to develop new techniques for user collaboration

Additional missing enhancements for users

- Nice progress bar for a resource intensive shell would be nice to have.
- For example CERN SWAN setup -

write out to csv file

```
scope / IIIchane / IIIcsise / Iocaibie
                                                                     'ip', 'traceTimeentry')
#BNL traces.show(10)
print 'number of traces - {}'.format(BNL_traces.count())
csv_BNL_traces='csv_BNL_traces_{0:4d}_{1:02d}_{2:02d}'.format(year,month,day)
print 'Writing csv output to directory - {}'.format(csv_BNL_traces)
BNL_traces.write.csv(csv_BNL_traces,mode='overwrite')
src path = "/user/bdouglas/{}".format(csv BNL traces)
eos_dir = "/eos/atlas/user/b/bdouglas/BNL_MAS/csv_traces_BNL"
dst_path = os.path.join(eos_dir,csv_BNL_traces)
if not os.path.exists(dst path) :
    os.mkdir(dst path)
cmd = 'hdfs dfs -copyToLocal {0} {1} '.format(src_path,dst_path).split() # cmd must be an array of arguments
print cmd
files = subprocess.check output(cmd).strip()
```

•	Apache	Spark: 38 EXEC	CUTORS 76 CORE	S Jobs: 3 COM	PLETED		\otimes \times
	Job ID	Job Name	Status	Stages	Tasks	Submission Time	Duration
•	0	json	COMPLETED	1/1	83 / 83	2 minutes ago	26s
•	1	count	COMPLETED	2/2	84 / 84	2 minutes ago	1m:06s
•	2	CSV	COMPLETED	1/1	83 / 83	a few seconds ago	23s

. . . .

Processing - /user/rucio01/traces/traces.2019-10-10* number of traces - 414196 Writing csv output to directory - csv_BNL_traces_2019_10_10

Extra Slides

Example: sPHENIX Test Beam

JUPYTER

FAQ

This study

This study extracts the dE/dx resolution from the sPHENIX 2019 beam test at FNAL by projecting the 16 layer prototype device to fully fledged 48-layer configration envisioned for EIC.

Note the energy deposition from 120 GeV/proton is higher than MIP due to radiative rise that leads to slightly better dE/dx resolution due to ionization statistics.

Input

In [1]: const TString infile = "scan2/tpc beam ALL-0000.evt TpcPrototypeGenFitT // const TString description = "Position scan 2, #eta = 0, 3+ pad clust // const TCut cut = "TPCTrack.nCluster>=14 && Sum\$(ClusterY_Rotated>-.3 const TString description = "Scan 2, 120 GeV/c proton, #eta = 0, 2+ pad const TCut cut = "TPCTrack.nCluster>=14 && Sum\$(ClusterY_Rotated>-.3) =

> // const TString infile = "eta_0.3/tpc_beam_ALL-0000.evt_TpcPrototypeGe // const TString description = "120 GeV/c proton, #eta = 0.3, 2+ pad cl // const TCut cut = "TPCTrack.nCluster>=12 && Sum\$(ClusterY Rotated>-.3

```
In [2]: %%cpp -d
```

#include "sPhenixStyle.C" #include "SaveCanvas.C"

TFile *_file0 = NULL; TTree *T(nullptr);

In [3]: // gSystem->Load("libtpc2019.so");

```
SetsPhenixStyle();
TVirtualFitter::SetDefaultFitter("Minuit2");
gStyle->SetLegendTextSize(0);
```

sPhenixStyle: Applying nominal settings. sPhenixStyle: ROOT6 mode

Info in <TCanvas::SaveSource>: C++ Macro file: scan2/tpc_beam_ALL-0000.

PDF

```
In [7]: %%cpp -d
        Double t langaufun(Double t *x, Double t *par)
          //Fit parameters:
          11
```


Note the cluster energy for 1-pad and 2-pad cluster (red, green) are significantly lower than that

from 3/3+ pad clusters (blue, magenta). To be understood. For now, just analyzing 2+ pad clusters as the charge spread from zig-zag are expected to spread the charge to 3 pads.

//In the Landau distribution (represented by the CERNLIB approximatio //the maximum is located at x=-0.22278298 with the location parameter //This shift is corrected within this function, so that the actual //maximum is identical to the MP parameter.

** Notebook analysis courtesy of Jin Huang using custom sPHENIX Root Kernel

hClusterEnergyFit->Draw("same"); // gPhiDistortion->Draw("p");

TLegend *leg = new TLegend(.4, .7, .95, .9, + "Cluster Energy on g leg->AddEntry(hClusterEnergy, TString("Data: ") + description, "1") leg->AddEntry(hClusterEnergyFit,

Form("Langdau * Gauss Fit, #mu= %.0f ADU", hClusterEner leg->Draw();

```
cl->Draw();
SaveCanvas(cl,
         TString( file0->GetName()) + TString(cl->GetName()), kFALS
```

Minimizer is Minu	it2				
Chi2	=	403.493			
NDf	=	164			
Edm	=	2.69546e-08			
NCalls	=	193			
Width	=	66.7173	+/-	1.25122	(limit
MP	=	423.708	+/-	2.09786	(limit
Area	=	276531	+/-	2386.94	(limit
GSigma	=	89.174	+/-	2.32025	(limit

Info in <TCanvas::Print>: png file scan2/tpc_beam_ALL-0000.evt_TpcProto

BROOKHAVEN NATIONAL LABORATORY

Scientific Data and **Computing Center**

Notebook Sharing: Short Term

Activities 🏼 🌍 Google Chrome	÷ *			Thu Jul 11	, 6:51 PM ●			▼ ⊕ ¹
🗢 JupyterHub	× +			8	🗢 JupyterHub	× +		×
← → C ☆ ③ local	lhost:8000/hub/login	@ ☆ 🛃 🤁 💈 🖗	(=) 🛍 B 📿 🌄	🔍 🇐 E	← → C ∆	① localhost:8000/hub/login	④ ☆	Incognito 😸 ᠄
🔵 jupyter					🔁 jupyt	ter		
	an unsecured HTT	lub seems to be served o 'P connection. We strong ing HTTPS for JupyterHu	ly			Sign in Warning: JupyterHub seems to be server an unsecured HTTP connection. We struct recommend enabling HTTPS for Jupyter Username: Password: Sign In	ongly	

* Courtesy Daniel Allan, illustrative gif: https://github.com/danielballan/jupyterhub-share-link/blob/master/demo.gif?raw=true

- Low-effort, short-term sharing between users on the same Hub
- Sender creates shareable link that provides last saved version of notebook to link recipient
 - Short-term link expires after certain time
 - Link encodes notebook options, such as container, to ensure compatible software environment
- See <u>https://github.com/</u> danielballan/jupyterhub-sharelink

Notebook Archiving/Sharing

- Prepare a gallery of notebooks on Binder with a carefully defined software environment that anyone can recreate from a git repo with standard environment specs (e.g. requirements.txt)
 - 1. Enter URL of the repo
 - 2. Clicking "launch"
 - 3. Waiting and watching the build logs
 - 4. Copy a special link that will route directly to a Jupyter notebook running in a container that has repo contents and all software needed to run it successfully.
- Easy way for people to try your code and get running immediately
- Tightly coupled to Kubernetes and Docker, but developing similar workflows on HPC using Singularity

Build and launch a repos	sitory			
GitHub repository name or URL		<u>л</u>		
https://github.com/choldgraf/co	onda 🔫	"I	2	GitHub 🔻
Git branch, tag, or commit		Path to a notebook file (optional)		
Git branch, tag, or commit	â	Path to a notebook file (optional)	File 🕶	launch
Copy the URL below and share ye	our Binder w	ith others:		
https://mybinder.org/v2/gh/	choldgraf/	conda/master		Ê
Copy the text below, then paste i	nto your RE	ADME to show a binder badge: 😵 launch binder		•
ম			පු	
Waiting	Building			
Build logs				hide
<pre>> a5ca44eaa7ee Step 25/38 : ARG REPO_DIR=> Using cache> a25281372bef Step 26/38 : ENV REPO_DIR> Using cache> 3d14afac5880 Step 27/38 : WORKDIR \${REP> Using cache> 5d5a1af05b90 Step 28/38 : ENV PATH \${HO> Using cache> 6adca6642720 Step 29/38 : USER root> Using cache> 3708d9fa7fc0</pre>	\${REPO_DII PO_DIR}	R} l/bin:\${REPO_DIR}/.local/bin:\${PATH}		
Step 30/38 : COPY src/ \${R > 618e08487bd1 Step 31/38 : RUN chown -R > Running in Oba0efbec	\${NB_USER	<pre>}:\${NB_USER} \${REPO_DIR}</pre>		•

HTTP Frontend Configuration

- Authentication via Mellon plugin (for Keycloak)
- Subdivide URL space for different hub servers
 - /jupyterhub/\$cluster for HTC/HPC/others

- Load-balancing configuration \bullet
 - Need cookie for sticky-sessions
 - Newest apache on RHEL7
 - Requires websockets support


```
Header add Set-Cookie "ROUTEID=.%{BALANCER WORKER ROUTE}e; path=/" env=BALANCER ROUTE CHANGED
<Proxy "balancer://htccluster">
   BalancerMember "https://jupyter10.sdcc.bnl.gov:8000/jupyterhub/htc" route=1
   BalancerMember "https://jupyter11.sdcc.bnl.gov:8000/jupyterhub/htc" route=2
   BalancerMember "https://jupyter12.sdcc.bnl.gov:8000/jupyterhub/htc" route=3
   ProxySet stickysession=ROUTEID
 </Proxy>
<Proxy "balancer://ws-htccluster">
   BalancerMember "wss://jupyter10.sdcc.bnl.gov:8000" route=1
    BalancerMember "wss://jupyter11.sdcc.bnl.gov:8000" route=2
    BalancerMember "wss://jupyter12.sdcc.bnl.gov:8000" route=3
  ProxySet stickysession=ROUTEID
  </Proxy>
 <Location /jupyterhub/htc>
                      "balancer://htccluster"
   ProxyPass
   ProxyPassReverse "balancer://htccluster"
  </Location>
 RewriteCond %{HTTP:Connection} Upgrade [NC]
 RewriteCond %{HTTP:Upgrade} websocket [NC]
 RewriteRule /jupyterhub/htc/(.*) balancer://ws-htccluster/jupyterhub/htc/$1 [L,P]
```

