

Machine Learning for Data Quality Monitoring

Thomas Britton

Goal

Goal: Replace myself with an Al

 Further goals: Create a system which can monitor output from the detectors and flag problems early. Potentially pick out correctable issues (through calibration) and perform adjustments as needed

Tools and tactics

- Chose Keras with tensorflow backend
- Start by looking at the histograms, as .pngs (just like how I do it)
 - Use convolutional NN to do image classification
 - Take each classification/confidence and use an aggregator to classify the entire run/take action on flagged issues

Early results

- Started with one image (BCAL_occupancy)
- Low sample training more okay in this case
 - No need for image augmentation!
- Training set: <u>75%</u> (randomly selected of the *2018-08 runs*)
- Validation: the other <u>25%</u>
- Grow the set by testing and labeling on other run periods

The Network

- My own: achieved ~96% accuracy.
- Needed to use a more sophisticated network
 - Introducing inceptionV3
 - Think of it like a network trying various convolutions and figuring out which is best

The Network

The Network

- "Good" accuracy of 99.4%
 - False positive rate of 1.8%
- "NoData" accuracy of 100.0%
 - No false positives/ negatives
- "bad" accuracy of 93.3%

Towards Crowd sourcing labeling

Future

- Expert labeling
 - Different/more varied classifications
- Build and train a few models
 - Connect them together (LSTM/Recurrent NN?)
- Integrate with data taking
 - Incremental training pipeline

