Machine Learning Planning Exercise: Theory Applications

Nobuo Sato ODU/JLab

Computing Round Table (2019) JLab, 2019

Zooming in at the femtometer scale using JLab12

Quantum probability distributions in the nucleon

F_i	Standard label	β_i	
F_1	$F_{UU,T}$	1	$\frac{1}{d}$
F_2	$F_{UU,L}$	ε] a .
F_3	F_{LL}	$S_{ }\lambda_e\sqrt{1-\varepsilon^2}$	
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$	
F_5	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	$ ec{S}_{\perp} \mathrm{sin}(\phi_h-\phi_S)$	
F_6	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$	
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$	
F_8	$F_{UT}^{\sin(3\phi_h - \psi_S)}$	$ert ec S_{\perp} ert arepsilon \sin(3\phi_h - \phi_S)$	
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$	
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{\parallel}\varepsilon\sin(2\phi_h)$	
F_{11}	$F_{LT}^{\cos\phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$	
F_{12}	$F_{LL}^{\cos\phi_h}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$	
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$	
F_{14}	$F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$	
F_{15}	$F_{LU}^{\sin \phi_h}$	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h$	
F_{16}	$F_{UU}^{\cos\phi_h}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$	
F_{17}	$F_{UT}^{\sin \phi_S}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$	
F_{18}	$F_{UT}^{\sin(2\bar{\phi}_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$]

$$\frac{d\sigma}{lx \ dy \ d\Psi \ dz \ d\phi_h \ dP_{hT}^2} \sim \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2)\beta_i$$

Name	Symbol	meaning
upol. PDF	f_1^q	U. pol. quarks in U. pol. nucleon
pol. PDF	g_1^q	L. pol. quarks in L. pol. nucleon
Transversity	h_1^q	T. pol. quarks in T. pol. nucleon
Sivers	$f_{1T}^{\perp(1)q}$	U. pol. quarks in T. pol. nucleon
Boer-Mulders	$h_1^{\perp(1)q}$	T. pol. quarks in U. pol. nucleon
:	÷	
FF	D_1^q	U. pol. quarks to U. pol. hadron
Collins	$H_1^{\perp(1)q}$	T. pol. quarks to U. pol. hadron
	:	

ML for global analysis

- Theory: PDFs, FFs, TMDs, GPDs, GTMDs, Wigner distributions
- ML: parameter space → observable space
- Multi-disciplinary:
 - o QCD scientists: JLab, Argonne, Temple
 - o Comp. scientists: ODU, Davidson College

Proposal for CNF

LDRD19: JLab/ODU/Davidson

LDRD19: JLab/ODU/Davidson

Summary and outlook

ML for QCD global analysis - proposal for CNF

- o Multi-disciplinary \rightarrow QCD scientists, computer scientists
- o Next generation of QCD analysis tools \rightarrow boost scientific research

ML based MCEG (ETHER) - LDRD19

- o Data compactification tool
- o MCEG free of theory assumptions at the femtometer scale