Machine Learning for particle identification

Yulia Furletova (JLAB)

Outline

- Introduction or global strategy for next generation of particle experiments
- Application of Machine Learning algorithms for particle identification
- Current implementation of ML algorithms for transition radiation detectors/trackers (as example)
- Conclusions

Third millennium accelerator/detector technologies for "Femto-world"

High luminosity accelerator facilities

(need for precision measurements and rear physics)

High granularity detectors (high rate and precision measurements)

=> New requirements for data processing => especially for online data processing

FPGA based

Yulia Furletova

Computer Farm based

Online reconstruction of physics quantities

Readout system capable to handle high rate environments would allow to run at higher luminosity.

=> Having a possibility to reconstruct physics properties (p, E, vtx, pid) would allow to perform physics event selections (or online data reduction) more efficiently (before storage).

Yulia Furletova

Particle identification

Limited number of "stable" final state particles:

- Scattered and secondary electrons
- Gammas
- Individual hadrons (π^{\pm} , K^{\pm},p)
- Jet/Jets
- Muons (absorber and muon chamber)
- Neutrinos (missing PT in EM+HCAL)
- Neutral hadrons (n,K⁰_L) (HCAL)

Looking at topology

- Electrons: EMCAL cluster + track pointing to cluster
- Gammas (γ): EMCAL cluster, no track pointing to cluster
- Neutrinos (ν): missing P_T
- Muons: track, min. energy in EMCAL, min. energy in HCAL, track in muon det.

Other Methods for PID (mass difference):

- -dE/dx: (p<1GeV)
- -Time-of-Flight: (p<3-6GeV)
- -Cherenkov radiation: p < 5 (50) GeV)
- -Transition radiation: (e/h separation) 1 < p < 100GeV

Yulia Furletova

Machine Learning tools

Multivariate classification:

- JETNET (Fortran based Artificial Neural Network)
- ROOT-based Toolkit for Multivariate Data Analysis (TMVA) https://root.cern.ch/tmva:
 - -> Deep networks (DN)
 - -> Multilayer perception (MP)
 - -> Boosted decision trees

Capsule Networks (pixelated)

(first introduced by Geoffrey Hinton in 2017): joint proposal of ODU and Jefferson Lab to study application of capsule networks

(Khan M. Iftekharuddin (ODU), D.Romanov (JLAB))

ML for PID with Calorimeter

- EMCAL Calorimeter:
 - electron/hadron identification (shower profile, E/p)
 Multivariate classification

gamma vs π⁰ -> γγ (cluster profile)
 Capsule (pixelated) ML algorithms

- <u>Hadronic Calorimeter :</u>
 - electron/hadron identification
 - (shower profile, EMCAL/HCAL)
 - Muons (EMCAL/HCAL) Multivariate classification

Fractal dimension using both ECAL and HCAL for e – , μ – and π + at 40 GeV

ML for Jets

Capsule (pixelated) ML algorithms

- Jet-finding algorithms (shape of jet cone)
- Overlapping jets
- Sub-structure of jets

Particle-flow calorimeter

Mark Thomson

Yulia Furletova

JET identification at parton level

Multivariate classification

Use such properties as number of particles in jet, particle id, energy, shape, displaced vertex, etc..

Yulia Furletova

light-quark vs gluon-jet

DORIS e+e- storage ring (DESY)

ML for Cherenkov, TOF, tracking detectors

Example, Modular RICH for EIC

- Ring identification Capsule (pixelated) ML algorithms
- Particle IDs Multivariate classification

dE/dx in tracking detectors

TOF

ML for Transition radiation detector

(ongoing EIC detector R&D eRD22 project)

- Jefferson Lab:
 - ✓ Howard Fenker
 - ✓ Yulia Furletova
 - ✓ Sergey Furletov
 - ✓ Lubomir Pentchev
 - ✓ Beni Zihlmann
 - ✓ Chris Stanislav
 - ✓ Fernando Barbosa
 - ✓ Cody Dickover

- > University of Virginia
 - ✓ Kondo Gnanvo
 - ✓ Nilanga K. Liyanage
- > Temple University
 - ✓ Matt Posik
 - ✓ Bernd Surrow

ML for Transition radiation detector

(ongoing EIC detector R&D eRD22 project)

Transition radiation is produced by a charged particles when they cross the interface of two media of different dielectric constants

Use TRD for electron identification, electron/hadron separation (for particle γ >1000)

TR in X-ray region is extremely forward peaked within an angle of $1/\gamma$

Energy of TR photons are in X-ray region (2 - 40 keV)

Total TR Energy ETR is proportional to the γ factor of the charged particle

TRD combined with GEM tracker: high granularity (high rate capabilities).

Overlapping clasters TR and dE/dx measurements

Electron and pion identification (TR photons)

Electrons (dE/dx + TR photons)

Separation/ Identification of TR-clusters and dE/dx clusters Soft TR-photons:

- absorbs near entrance window, therefore have large drift time
- sensitive to dead volumes, like
 Xe-gap, cathode material.
- Increase of radiator thickness does not lead to increase of number of soft-photons (radiator self-absorption)
- <u>Hard TR-photons:</u>
 - Depending on energy of TRphotons, could escape detection (depends on detection length)
 - Increase of radiator leads to increase of hard TR-spectra.
- Pions: dE/dx only

GEANT4: electron and pion comparison

> covered $\frac{1}{2}$ of the sensitive area with radiator (to mimic pion beam) y

Signals from GEMTRD using FlashADC125

Machine learning technique

electrons +TR Drift time electrons +TR pions π

Used different methods/programs (JETNET, Root based-TMVA, etc) for cross-check. Ca. 23 input variables (<E> per slice along drift distance, timing, etc)

Neural network output for e/π identification

Yulia Furletova

-0.4

0

0.2

0.4

0.6

1.2

1.4

ML in FPGA

10x10cm module (GEM based tracking device), high granularity!

<u>Raw-mode (trigger-less):</u> 125MHz x 2 bytes x 1024 channels ~ **250 GBytes/s** (99.9 % is just noise/pedestals)

Difficult for streaming directly to farm, need data reduction at early stage (during online processing on FPGA)

Move data processing into FPGA -> Zero-suppression and Cluster finding -> particle identification

That would allow to include such types of detectors into a high-level event selection.

Ongoing development for GEMTRD EIC detector R&D eRD22 (GEMTRD) project!

Yulia Furletova

Summary

- Particle identification is very important for EIC physics. That's directly related to a physics event selection efficiency and precision measurements at the femto-scale level.
- With high luminosity and high data rate environment we should have a
 FAST decision (data reduction) along data transfer => ML in FPGA are
 naturally suited for that type of applications (online data reduction or high
 level physics event selection/trigger)
- Offline (on farm) ML particle identification algorithms could be used for GLOBAL Particle identification (combined information from different subdetectors CAL, TOF, Cherenkov, dE/dx, TRD, etc), after individual subdetectors FPGA ML decisions.

Thank you!

Backup

Electron identification (e/hadron separation)

Electronics:

	MHz	ns/bin	Peaki ng time	Range	Channels/ch ip cost	ADC bits	Shaper
FlashADC125	125	8	30ns	1µs or stream	\$50/channel	14bit	-Undershooting -No baseline restorer
APV25	40	25	50ns	625ns	128 chan/chip		Analog output (no digitalization)
DREAM (CLAS12)	40	25	50ns		64chan/chip		Analog output (no digitalization)
VMM3 (ATLAS)	4	250	25- 200ns		64chan/chip	10bit	L0 or continuous
SAMPA (ALICE)	10-20	100-50	160ns	Stream 3.2Gbit/s	32chan/chip 30\$/chip 1\$/channel	10bit	500ns- return to baseline Baseline restorer, DSP (zero- suppression, thr)