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Motivation: The largest CPU resource driver for event
\ ] reconstruction is charged particle tracking.
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DTrackWireBased e Hall-B requested a 50M unit from NERSC for 2019.
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/ e Additional CPU will be used on JLab farm and on OSG for
DTrackTimeBased lg—— reconstructing simulated data.
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Roughly 20M core-hours (80 units/hour on 32 core node)

e At $0.06793/core-hour * this amounts to ~$1.3M

e Hall-D has similar numbers.

Is 1594007 calls
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e Total cost per year for reconstruction computing is O(S]S1OM)2

* https.//acg.umaine.edu/pricing/fee-structure/



e ML is ideal for automated
recognition of patterns and
regularities in data.

e Tracking in HEP and NP is classical
pattern recognition problem that
until recently has been solved in
separate steps not involving ML
methods.

e ML has the potential to

revolutionize tracking.

e Example from NOVA: “It improved the
headline analysis performance by 30%,
equivalent to an equipment savings of
approximately $72 million.” (Dr. Aristeidis
Tsaris (FNAL), Computing Round Table
11/18)

Bubble chamber film, analyzed by manual pattern.


https://www.jlab.org/indico/event/247/
https://www.jlab.org/indico/event/247/
https://www.jlab.org/indico/event/247/

Expected Benefits of ML

e Data Reduction:
o If the events with no tracks are identified during writing of the data, the data volume will be

reduced significantly.

e Tracking Speed:
o If we can match crosses to the right tracks, it will eliminate need for combinatorics.
o Especially for high luminosity runs this will reduce tracking time for up to 40%.

e Tracking Speed (more):
o If we can calculate state vectors from the pattern in the drift chamber, this will reduce number

of iterations needed for Kalman-Filter.

o We might even be able to recognize tracks from hit patterns and replace track finding and
fitting algorithms with a ML algorithm.

o Potentially very big gain in speed (don’t have estimates yet)
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More topics: hitp:

TensorFlow (TF)

- Repository of Jupyter notebook TF tutorials for beginners: https://
= - Repository of Jupyter notebook TF tutorials for beginners: https://
| T 1000 11000 i i a i
- Written tutorial for beginners on the basics of TF: https://
800 « Written tutorial for beginners on the basics of TF: https://hackernoon.com/

- Paper describing the internal workings of TF: https.//arxiv.org/.
Pdf/1610.01178 pdf
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BDTG ©

Train BDTG on zenith angle

o all TBT with N__==24

e Inputs:
o DFDCPseudo X,Y

e 0.200<=p<=5GeV/c
e 500k events
e run42513
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Covariance Matrix Elements: Trained on State vector
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Track Identification (data cleanup)

|ldentifying existence of a track in a sector can be
used as Level 3 trigger, about 30% of events in
current data have no tracks in either sector.

Even in events where some sectors have tracks,
some of them contain only noise hits (proportional to
luminosity), dropping data from sectors with no
potential tracks can reduce data even further. Drift
chamber is 32% of recorded data.




Track Combinatorics (processing speed)

The reconstructed segments in one sector are
combinatorially iterated to find those that form a
track, with ML noise segments can be
discarded.

In case of two tracks in one sector identifying
segments that belong to each track will help
reducing combinatorics and significantly reduce
Kalman filter iterations over track candidates.
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How to proceed

e Repository created on github for Multi-hall use to develop code and samples

https://github.com/JeffersonLab/trackingML

e Draft plan for file formats being developed collaboratively

e See if we can learn from HEP, e.g., TrackML Particle Tracking Challenge

e Time scale unknown, best effort approach needs help from ML trained
scientists
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https://github.com/JeffersonLab/trackingML
https://www.kaggle.com/c/trackml-particle-identification

