Empirically Trained Hadronic Event Regenerator

Evan McClellan

July 9th, 2019

Hadronic Event Generators

- PYTHIA
- HERWIG
- ISAJET
- Sherpa
- Inputs:
 - ▶ PDFs (QCD)
 - FFs (QCD)
 - Factorization
 - QED
 - Tune to match experiment...

ETHER: An Agnostic Event Generator

- No theory input on vertex interactions
- Generative Adversarial Networks (GANs)
- Inputs: electron and proton
- Outputs: long-lived (detectable) particles
- Train generator against existing data
- Leverage recent major advances in Generative Machine Learning

ETHER Collaboration

Old Dominion University

- Yaohang Li
- Yasir Awadh Alanzi

Davidson College

- Michelle Kuchera
- Raghuram Ramanujan
- Ryan Strauss
- Evan Pritchard
- Michael Robertson

Jefferson Lab

Nobuo Sato Wally Melnitchouk Tianbo Liu Evan McClellan Luisa Velasco

Progress

Dual GAN

Outlook

Full Exclusive Event

- R&D on data representation and GAN architecture for full exclusive events
- R&D: make generators *conditional* on \sqrt{s}
- Challenges:
 - Variable number of particles
 - Discrete (PID) and continuous (4-vector) variables

Simpler, Inclusive Final States

- Develop inclusive GANs for specific reactions
- One GAN per final state:
 - *p*(*e*, *e'*)*X p*(*e*, *e'*π⁺)*X p*(*e*, *e'*π⁺π[−])*X*
- R&D: make generators *conditional* on \sqrt{s}