Hadronic Event Generators

- PYTHIA
- HERWIG
- ISAJET
- Sherpa

Inputs:
- PDFs (QCD)
- FFs (QCD)
- Factorization
- QED
- Tune to match experiment...
ETHER: An Agnostic Event Generator

- No theory input on vertex interactions
- Generative Adversarial Networks (GANs)
- Inputs: electron and proton
- Outputs: long-lived (detectable) particles
- Train generator against existing data
- Leverage recent major advances in Generative Machine Learning

Diagram:

- Electron (e-) to Generative Neural Network
- Proton (p) to Generative Neural Network
- Outputs: leptons, nucleons, pions, kaons, photons

Training Data:

- Leptons
- Nucleons
- Pions
- Kaons
- Photons
ETHER Flowchart

Nature

Events: vertex level

Experimental detector

Events: detector level

ETHER

Events: vertex level

neural net detector

Events: detector level

distortion

distortion
Nature

Events: vertex level

Experimental detector

distortion

Detector simulator

Events: detector level

ETHER

Events: vertex level

neural net detector

distortion

Events: detector level
ETHER Flowchart

Nature

Events: vertex level

Experimental detector

Detector simulator

Likelihood analysis

Ether

Events: vertex level

Events: detector level

neural net

detector

Distortion

Distortion
ETHER Flowchart

Nature

Events: vertex level

Experimental detector

Events: detector level

Detector simulator

Events: detector level

Likelihood analysis

ETHER

data compression

distortion

distortion

Likelihood analysis
ETHER Collaboration

Old Dominion University
- Yaohang Li
- Yasir Awadh Alanzi

Davidson College
- Michelle Kuchera
- Raghuram Ramanujan
- Ryan Strauss
- Evan Pritchard
- Michael Robertson

Jefferson Lab
- Nobuo Sato
- Wally Melnitchouk
- Tianbo Liu
- Evan McClellan
- Luisa Velasco
Dual GAN

![Graph showing the normalized yield comparison between Pythia and GAN. The x-axis represents the energy (E') and the y-axis represents the normalized yield. The graph compares the probabilities of various particles such as γ, e^-, e^+, μ^-, μ^+, ν_e, $\bar{\nu}_e$, ν_μ, $\bar{\nu}_\mu$, ν_τ, $\bar{\nu}_\tau$, p, \bar{p}, n, \bar{n}, π^+, π^-, K^+, K^-, K^0, L, \bar{K}^0_L. The data points are shown for both Pythia and GAN, with Pythia represented by black squares and GAN by red triangles. The graph includes a legend indicating the different particles and their probabilities.]

McClellan
Empirically Trained Hadronic Event Regenerator
July 9th, 2019 6 / 7
Outlook

Full Exclusive Event
- R&D on data representation and GAN architecture for full exclusive events
- R&D: make generators *conditional* on \sqrt{s}
- **Challenges:**
 - Variable number of particles
 - Discrete (PID) and continuous (4-vector) variables

Simpler, Inclusive Final States
- Develop inclusive GANs for specific reactions
- One GAN per final state:
 - $p(e, e')X$
 - $p(e, e'\pi^+)X$
 - $p(e, e'\pi^+\pi^-)X$
 - ...
- R&D: make generators *conditional* on \sqrt{s}