Streaming Event Reconstruction
with JANA2

Nathan Brei, David Lawrence, Amber Boehnlein
9 July 2019



What is JANA?

* A modern C++ framework
* Parallelizes eventreconstruction across threads (single-node)
* Provides a plugin architecture for organizing scientific code into decoupled components
* Intermediate results get calculated at most once ("lazy + memoized")
* Lightweight and close to the hardware

* Internally uses a non-blocking streaming model
* Avoid waiting on locks, swap out different scheduling algorithms
* Optimize for manycore and NUMA architectures, e.g. NERSC
 Self-report parallel performance and bottlenecks
e Semantics are similar to Kahn Process Networks

* Used by GlueX, EIC, BDX, etc



JANA(1+2) toy example (batch processing)

Batched
Events
(HDDM or EVIO)

TrackFactory: ClusterFactory:

HDDMEventSource: JFactory JFactory
JEventSource (parallel) (parallel)
(sequential)

HistogramProcessor:
JEventProcessor
(partially sequential) ROOT
Histogram




JANA(1) vs JANA(2)

In JANA(1), the fundamental unit of parallelism is a (physics) event. This is
sufficient most of the time, but doesn't fit in several key areas:

* Parsing/disentangling
* Subevent-level parallelism
e Streaming data readout

* The JANA(2) engine now supports these use cases
* The next challenge is extending the APl to expose this functionality

* General goal is to preserve existing semantics, and avoid making the simple
use cases more complicated



Streaming Data Readout with JANA

What makes this interesting:

* Detectors emit "Hits" (:= a value indexed by timestamp and detector_id), whereas JANA
processl)es "Events" (:= a collection of values across all detector_ids within some timestamp
Interva

e =>We can do event building in JANA!
* Ingeneral this is called stream windowing, and it is closely related to an SQL JOIN
« TheJANA engine needs some kind of stream windowing whenever two streams are merged

Design goals:

e Supportstreaming as an optional plugin, but use it to inform APl improvements
» Keep deserialization, transport, and windowing orthogonal to each other

* Make these componentsreusable

. Keep”J,?}NA responsible for thread-level parallelism; use ZeroMQ or Kafka or xMsg for node-level
parallelism



1. Streaming Data Readout, no event building

HitFactory: ClusterFactory:
JFactory JFactory

TrackFactory:
JFactory

ZmqgSource

<ReadoutMessage>

HistProcessor: Histogram

JStreamingEventSource<ReadoutMessage> JEventProcessor
: JEventSource




2. Streaming Data Readout, with event building

HitFactory: ClusterFactory:
JFactory JFactory

TrackFactory:
JFactory

ZmqgSource SessionWindow:

<ReadoutMessage> WindowingStrategy

HistProcessor: Histogram

JStreamingEventSource<ReadoutMessage> JEventProcessor
: JEventSource




3. Streaming Data Readout, with software trigger

HitFactory: ClusterFactory:
JFactory JFactory

TrackFactory:

JFactory

ZmqgSource ZmqgSource
<FastReadout> <SlowReadout>

SessionWindow FixedWindow )
HistProcessor: Histogram

JEventProcessor

EventTrigger

JTriggeredEventSource<ReadoutMessage>
: JEventSource



3. Streaming Data Readout, with software trigger

HitFactory: ClusterFactory:
JFactory JFactory

TrackFactory:
JFactory

ZmqgSource ZmqgSource
<FastReadout> <SlowReadout>

SessionWindow FixedWindow )
HistProcessor: Histogram

JEventProcessor

EventTrigger

JTriggeredEventSource<ReadoutMessage>
: JEventSource




Next steps

e Short term
* Demonstrate/perf test using JANA in a streaming context
* Integrate control messages, e.g. change of run number
* Develop reusable abstractions for streaming event sources

* Medium term
* Support the INDRA-ASTRA streaming readout LDRD (Markus, Graham, & Eric)

* Evolve JANA to support this as cleanly as possible

* Open question: How does one ensure memory safety when working with time-
indexed, memory-pooled, user-defined types?

* Long term
* xMsg+JANA as a streaming/reactive analogue to MPI+OpenMP



Thank youl!



Why do triggering inside JANA?

» Code for doing reconstruction can be used for triggering without
modification.

* Any results calculated for the triggering are automatically propagated
downstream to the reconstruction.

* Parallelization of triggering can coordinated with parallelization of
reconstruction.

* Tradeoff between bounding latency and balancing load can be
explored by tuning scheduler parameters.

e Caveat: This only scales up to a point, after which we would have to
use node-level parallelism as well.



Arrows-and-Queues engine

* Directed acyclic graph of queues and arrows

e Arrows pop data from an input queue, compute something, and push new
data onto an output queue

* Details:

e Each worker thread is assigned an arrow from a scheduler and attempts to execute it
If the pop() fails, the arrow execution will fail rather than block
If the pop() succeeds, the push is guaranteed to succeed without needing to block
Backpressure is maintained by reserving space on the output queue before popping
Hybrid push-pull semantics cleanly handle critical sections
This is similar to a formalism called Kahn Process Networks
The general solution space is called 'reactive’ or 'dataflow' programming



