
Streaming Event Reconstruction 
with JANA2

Nathan Brei, David Lawrence, Amber Boehnlein

9 July 2019



What is JANA?

• A modern C++ framework
• Parallelizes event reconstruction across threads (single-node)

• Provides a plugin architecture for organizing scientific code into decoupled components

• Intermediate results get calculated at most once ("lazy + memoized")

• Lightweight and close to the hardware

• Internally uses a non-blocking streaming model
• Avoid waiting on locks, swap out different scheduling algorithms

• Optimize for manycore and NUMA architectures, e.g. NERSC

• Self-report parallel performance and bottlenecks

• Semantics are similar to Kahn Process Networks

• Used by GlueX, EIC, BDX, etc



HDDMEventSource:

JEventSource

(sequential)

JANA(1+2) toy example (batch processing)

JANA

queue

HistogramProcessor:

JEventProcessor

(partially sequential)

TrackFactory:

JFactory

(parallel)

ROOT

Histogram

ClusterFactory:

JFactory

(parallel)

Batched

Events

(HDDM or EVIO)



JANA(1) vs JANA(2)

In JANA(1), the fundamental unit of parallelism is a (physics) event. This is 
sufficient most of the time, but doesn't fit in several key areas:

• Parsing/disentangling

• Subevent-level parallelism

• Streaming data readout

• The JANA(2) engine now supports these use cases

• The next challenge is extending the API to expose this functionality

• General goal is to preserve existing semantics, and avoid making the simple 
use cases more complicated



Streaming Data Readout with JANA

What makes this interesting:

• Detectors emit "Hits" (:= a value indexed by timestamp and detector_id), whereas JANA 
processes "Events" (:= a collection of values across all detector_ids within some timestamp 
interval)

• => We can do event building in JANA!

• In general this is called stream windowing, and it is closely related to an SQL JOIN

• The JANA engine needs some kind of stream windowing whenever two streams are merged

Design goals:

• Support streaming as an optional plugin, but use it to inform API improvements

• Keep deserialization, transport, and windowing orthogonal to each other

• Make these components reusable

• Keep JANA responsible for thread-level parallelism; use ZeroMQ or Kafka or xMsg for node-level 
parallelism



JStreamingEventSource<ReadoutMessage>

: JEventSource

1. Streaming Data Readout, no event building

ZmqSource

<ReadoutMessage>

ZMQ

queue

JANA

queue

HistProcessor:

JEventProcessor

HitFactory:

JFactory

TrackFactory:

JFactory

Histogram

ClusterFactory:

JFactory



JStreamingEventSource<ReadoutMessage>

: JEventSource

2. Streaming Data Readout, with event building

ZmqSource

<ReadoutMessage>

ZMQ

queue

JANA

queue

HistProcessor:

JEventProcessor

HitFactory:

JFactory

TrackFactory:

JFactory

Histogram

ClusterFactory:

JFactory

SessionWindow:

WindowingStrategy



JTriggeredEventSource<ReadoutMessage>

: JEventSource

3. Streaming Data Readout, with software trigger

ZmqSource

<FastReadout>

"Fast" 

ZMQ

JANA

queue

HistProcessor:

JEventProcessor

HitFactory:

JFactory

TrackFactory:

JFactory

Histogram

ClusterFactory:

JFactory

SessionWindow FixedWindow

ZmqSource

<SlowReadout>

"Slow" 

ZMQ

EventTrigger



JTriggeredEventSource<ReadoutMessage>

: JEventSource

3. Streaming Data Readout, with software trigger

ZmqSource

<FastReadout>

"Fast" 

ZMQ

JANA

queue

HistProcessor:

JEventProcessor

HitFactory:

JFactory

TrackFactory:

JFactory

Histogram

ClusterFactory:

JFactory

SessionWindow FixedWindow

ZmqSource

<SlowReadout>

"Slow" 

ZMQ

EventTrigger



Next steps

• Short term
• Demonstrate/perf test using JANA in a streaming context

• Integrate control messages, e.g. change of run number

• Develop reusable abstractions for streaming event sources

• Medium term
• Support the INDRA-ASTRA streaming readout LDRD (Markus, Graham, & Eric)

• Evolve JANA to support this as cleanly as possible

• Open question: How does one ensure memory safety when working with time-
indexed, memory-pooled, user-defined types?

• Long term
• xMsg+JANA as a streaming/reactive analogue to MPI+OpenMP



Thank you!



Why do triggering inside JANA?

• Code for doing reconstruction can be used for triggering without 
modification.

• Any results calculated for the triggering are automatically propagated 
downstream to the reconstruction. 

• Parallelization of triggering can coordinated with parallelization of 
reconstruction.

• Tradeoff between bounding latency and balancing load can be 
explored by tuning scheduler parameters.

• Caveat: This only scales up to a point, after which we would have to 
use node-level parallelism as well.



Arrows-and-Queues engine

• Directed acyclic graph of queues and arrows

• Arrows pop data from an input queue, compute something, and push new 

data onto an output queue

• Details:

• Each worker thread is assigned an arrow from a scheduler and attempts to execute it

• If the pop() fails, the arrow execution will fail rather than block

• If the pop() succeeds, the push is guaranteed to succeed without needing to block

• Backpressure is maintained by reserving space on the output queue before popping

• Hybrid push-pull semantics cleanly handle critical sections

• This is similar to a formalism called Kahn Process Networks

• The general solution space is called 'reactive' or 'dataflow' programming


