Detector technologies with PANDA

Anastasios Tassos Belias / GSI

May 3 - 5, 2019 • George Washington University

Detector technologies with PANDA

Antiprotons @ FAIR

PANDA Detector

Schedule & Opportunities

Anastasios Tassos Belias / GSI

May 3 - 5, 2019 • George Washington University

Physics Objectives

HEP: interference		an-Milto	HEP: underlying elementary processes
Spectroscopy New narrow XYZ: Search for partner states		And Andrewson an	Nucleon Structure Generalized parton distributions: Orbital angular momentum
Production of exotic QCD states: Glueballs & hybrids		Bound	Drell Yan process: Transverse structure,
		States of	valence anti-quarks
Astro physics: Strange n-stars	Strangeness Strange baryons: Spectroscopy Polarisation	Strong	Timelike formfactors: Low and high E, e and µ pairs
		Interaction	HI collisions: comparing QGP
		Nuclear Physics to elementary	
Nuclear physics: Hypernuclear spectroscopy Hyp		bernuclear vsics: uble /\ hypernuclei beron interaction	Hadrons in nuclei: reactions Charm and strangeness in the medium

HESR - High Energy Storage Ring

Detector Requirements

Detector requirements:

• 4π acceptance

- High rate capability: 2x10⁷ s⁻¹ interactions
 Efficient event selection
 Continuous acquisition
- Momentum resolution ~1%
 Vertex info for D, K^o_s, Y
 (cτ = 317 μm for D[±])
 Good tracking
- Good PID (γ, e, μ, π, K, p)
 Cherenkov, ToF, dE/dx
- γ-detection 1 MeV 10 GeV
- Crystal Calorimeter

The PANDA Detector

The PANDA Detector

The PANDA Detector

17

Magnets

Solenoid Magnet

- Super conducting coil, 2 T central field (*B*_z)
- Segmented coil for target
- Instrumented iron yoke
- Doors laminated, instrumented, retractable

Status

- Design and production contract with BINP started
- Cooperation with CERN for cold mass
- Conductor production development
 - joint venture, BINP and Russian Inst.
- Yoke production started

Dipole Magnet

- Normal conducting racetrack design, 2 Tm
- Forward tracking detectors partly integrated
- Dipole also bends the beam
- → HESR component

Status

• Design contract with BINP started

- Inner bore: Ø 1.9 m /L: 2.7 m
- > Outer yoke: \emptyset 2.3 m /L: 4.9 m
- > Total weight: 300 t

- Vertical acceptance: ± 5°
- Horizontal acceptance: ± 10°
- > Total weight: 200 t

Interaction region

PANDA Targets

Luminosity Considerations

- Goal: $2 \times 10^{32} cm^{-2} s^{-1}$ for HL mode
- With $10^{11} \,\bar{p}$ stored and 50 mb cross section: $\rightarrow 4 \times 10^{15} cm^{-2}$ target density
- 1 μm gold foil has about $5.9 imes 10^{18} cm^{-2}$

Cluster Jet Target

- TDR approved by FAIR ECE
- Record of $2 \times 10^{15} cm^{-2}$ already achieved
- Continuous development
 - Nozzle improvement
 - Better alignment by tilting device

Pellet target

Pellet Target • > 4 × 10^{15} cm⁻² feasible

- > 4 $\times 10^{-3}$ C//l = leasing
- Prototype under way
- Pellet tracking prototype
- Towards TDR

The PANDA Detector - Tracking

Micro Vertex Detector

Detector Layout

- Silicon Pixels and Strip detector
- 4 barrels and 6 disks
- Hybrid pixels ($100 \times 100 \ \mu m^2$)
 - Radout ASIC ToPiX
 - Thinned sensor wafers
- Double sided strips
 - Rectangles and trapezoids
 - Readout ASIC PASTA
- Mixed forward disks (pixels/strips)
- 50 μ m vertex resolution, $\delta p/p \sim 2\%$ Challenges
- Low mass supports
- Cooling in small volume
- Radiation tolerance $\sim 10^{14} n_{1MeV eq} cm^{-2}$

Status

- TDR approved by FAIR ECE
- ASIC prototypes tests & adaptation
- Radiation tolerant links from CERN
 CRTy Versatile Link and DC/DC
- GBTx, Versatile Link and DC/DC
 Detailed service planning

Straw Tube Tracker

Detector Layout

- Layers of drift tubes
- Rin= 150 mm, Rout= 420 mm, l=1500 mm
- \bullet Tube made of 27 μm thin Al-mylar, $\varnothing = 1 cm$
- 4600 straws in 21-27 layers, of which 8 layers skewed at 3°
- Self-supporting straw double layers at ~ 1 bar overpressure (Ar/CO2) developed at FZ Jülich

Wire

• Resolution: r, $\phi \sim 150 \mu m$, z $\sim 1 mm$

Material Budget

- 0.05% X/X0 per layer
- Total 1.3% X/X0

Status

- TDR approved by FAIR ECE
- Readout prototypes & beam tests
- Ageing tests: up to 1.2 C/cm²
- Straw series production almost completed

Gaseous Electron Multipliers (GEM) Tracker

Forward Tracking inside Solenoid

- Tracking in high occupancy region
- Important for large parts of physics

Detector design

- 3 stations with 4 projections each
 - → Radial, concentric, x, y
- Central readout plane for 2 GEM stacks
- Large area GEM foils developed at CERN (50µm Kapton, 2-5µm copper coating)
- ADC readout for cluster centroids
 - → Approx. 35000 channels total
- Challenge to minimize material

Status

- Advanced mechanical concept
- Demonstrator construction ongoing,
 GEM foils from TECTRA delays

2mm

2mm

- Available electronics unstable
- → Other readout electronics required

A. Belias / GSI

2D Demonstrator

Challenges - Opportunities:

- Completion of demonstrator
- Characterization of GEM foils
- Readout electronics
- Full size prototype design
- Lack of manpower
 → need expert groups

Forward Tracker

Tracking in Forward Spectrometer

- Straw tubes, same as in STT (Barrel), vertically arranged in double layers
- 3 stations with 2 chambers each
 - FT1&2 : between solenoid and dipole
 - FT3&4 : in the dipole gap
 - FT5&6 : large chambers behind dipole
- 4 projections 0°/ \pm 5°/0° per chamber
- Readout ASIC PASTTREC and TDC-FPGA
 later upgrades for High Luminosity runs

Status

- TDR approved by FAIR ECE
- Testbeam campaigns 2018/2019
- Ongoing stereoscopic scans
- Aging tests: up to 1 C/cm²

Full Straw Tube Prototypes in HADES at GSI 2019: Installation – 2020: Data Taking

Outer Tracker of LHCb in PANDA The proposed idea:

- LHCb replaces its outer tracker with scintillating fibres for high intensity
- Short modules 2.4m, 20% of all
 PANDA could use these modules

Conceptual layout:

- Using all short modules inc. spares:
 → cover 4m with 2x4 planes
- Somewhat larger hole around beampipe
- Radiation length 2x higher than PANDA

Project assessment status:

- Spares can be delivered to GSI
- Active planes need to cool down
- Electronics: interface to TRB needed
- Mechanics: proposal for Thailand

Luminosity Detector

Elastic scattering:

- Coulomb part calculable
- \bullet Scattering of \bar{p} at low t
- Precision tracking of scattered \bar{p}
- Acceptance 3-8 mrad

Detector layout:

- Roman pot system at z=11 m
- Silicon pixels (80x80 μm2):
 4 layers of HV MAPS (50 μm thick)
- \bullet CVD diamond supports (200 $\mu m)$
- Retractable half planes in sec. vacuum **HV MAPS:**
- Development for Mu3e Experiment at PSI
- Active pixel sensor in HV CMOS
 - faster and more rad. hard
- Digital processing on chip

Status:

- TDR submitted to FAIR ECE
- Mechanical vessel, cooling, vacuum, design ready
- New MuPix prototype 1x2 cm² in test
- FPGA readout tests

The PANDA Detector - Calorimetry

Target Spectrometer EMC

PANDA PWO Crystals

- PWO is dense and fast
- Low γ threshold is a challenge
- Increase light yield:
 - improved PWO II (2xCMS)
 - operation at -25°C (4xCMS)
- Challenges:
 - temperature stable to 0.1°C
 - control radiation damage
 - low noise electronics
- New producer CRYTUR

- 11000 PWO Crystals
- LAAPD readout, 2x1cm²
- σ(E)/E~1.5%/√E + const.

Forward Endcap

- 4000 PWO crystals
- High occupancy in center
- LA APD and VPTT

Backward Endcap for hermeticity, 530 PWO crystals

<u> Target Spectrometer EMC – Status (1)</u>

APFE ASIC

Barrel EMC

PWO Crystal Production

- New producer CRYTUR (CZ)
- High quality crystals received
- Eol to fund remaining crystals

APD Screening

- Screening of 30000 APDs
- Facility in full shift operation
- All alveoles produced
- APD readout APFEL ASIC produced
- First slice (of 16) assembled

Backward Endcap EMC

- Submodule design ready
- Prepare series production
- Readout new ASIC tests successful

Activities at MAMI - BWE EMC data taking with A1 spectrometer for high-resolution electron scattering in Coincidence with hadrons

<u>Target Spectrometer</u> EMC – Status (2)

Forward Endcap EMC Status

- Production & Assembly well a
- All crystals are produced
- VPTT all characterized
 Modules production done
- APD screening progress
 - Modules assembly started
- FADCs for digitization
 SADC board (+Vers. Link) in production
- Test stand for Module calibration with cosmics
- Cooling system available, controls tests
- Pre-assembly support prepared

• First detector system to be fully assembled

Forward Spectrometer Calorimeter

Forward electromagnetic calorimeter

- Interleaved scintillator and absorber layers
 - 0.3 mm lead and 1.5 mm scintillator
 - total depth 680 mm (380 layers)
 - transverse size 55x55 mm²
- WLS fibers for light collection
- PMTs for photon readout
- FADCs for digitization
- Active area size 297x154 cm²

Status

- TDR approved by FAIR ECE
- SADC readout board in production
- Module design 2 x 2 cells of 5.5 x 5.5 cm² verified
- Tests with electrons and tagged photons:

→ Energy resolution

- $\frac{\sigma_E}{E} = 5.6/E \oplus 2.4/\sqrt{E[\text{GeV}]} \oplus 1.3$ [%] (1-19 GeV e⁻)
- $\frac{\tilde{\sigma_E}}{E} = 3.7/\sqrt{E[\text{GeV}]} \oplus 4.3$ [%] (50-400 MeV γ)
- → Time resolution 100 ps/ $\sqrt{E[GeV]}$

The PANDA Detector – Partcile ID

Target Spectrometer – DIRC Counters

panda

Detection of Internally Reflected Cherenkov light pioneered by BaBar

- Cherenkov detector with SiO₂ radiator
- Detected patterns give β of particles

Barrel DIRC

- Design similar to BaBar DIRC
- Polar angle coverage:

 $22^{\circ} < \theta < 140^{\circ}$

• PID goal:

 $3\sigma \pi/K$ separation up to 3.5 GeV/c

• Barrel DIRC Leader: J. Schwiening (GSI)

A. Belias / GSI

Endcap Disc DIRC

- Novel type of DIRC
- Polar angle coverage: 5° < θ < 22°
- PID goal: 3σ π/K separation up to 4 GeV/c

Barrel DIRC

Optimization and challenges

- Barrel Ø: 1 m, L: 2.5 m
- Focusing by lenses/mirrors
- More compact design
- Magnetic field \rightarrow MCP PMT
- Fast readout to suppress BG

Testbeams at CERN

- Several campaigns with improved prototypes
- Measurements agree well with simulation
- Developments of reconstruction methods
- Optimization of readout options
- π/K separation of 4.3 σ reached

Status

- TDR approved by FAIR ECE
- In-kind contract signed, tendering started
- Mechanics and optics production design
- QA of optics and MCP PMT developed
- Readout with PaDiWA / TDC (DiRICH, GSI)

Endcap Disc DIRC

Novel concept for forward PID

- Based on DIRC principle
- Disc shaped radiator
- Readout at the disc rim

Status

- Advanced design
- Several testbeams at CERN
- TDR submitted to FAIR ECE
- Goal: Full quarter disc prototype

Basic components

- SiO2 radiator disc 4 quadrants
- Focusing elements
- Optical bandpass filter
- MCP PMT for photon readout in magnetic field
- Readout of MCP PMT with ToFPET ASIC

Barrel Time of Flight

Target Spectrometer

ToF in-between Barrel DIRC and Barrel EMC

Scintillator Tile Hodoscope

- Scintillator tiles 5 mm thick
- Photon readout with SiPMs (3x3 mm2)
 - High PDE, time resolution, rate capability
 - Work in B-fields, small, robust, low bias
- System time resolution: <100 ps achieved
- ASIC ToFPET for SiPM readout Co-development
- Layout: long multilayer PCB for transmission ("railboard")

Status

- TDR approved by FAIR ECE
- Study of scintillator thickness (3-6 mm):
 - 5mm thickness confirmed as optimal
- SiPM radiation hardness studies planned
- Full Prototype readout "railboard" required
- QA of SiPM required

A. Belias / GSI

2400 660 1800 660-X 1800+X D A 900 900

> Prototype readout "railboard" 1m long!

Forward Time of Flight

Muon Detector System

Muon system rationale

- Low momenta, high BG of pions
- → Multi-layer range system

Muon system layout

- *Barrel*: 12+2 layers in yoke
- Endcap: 5+2 layers
- Muon Filter: 4 layers
- Fw Range System: 16+2 layers
- *Detectors:* Drift tubes with wire & cathode strip readout

Status

- TDR approved by FAIR ECE
- Testbeams at CERN, aging, cosmics §
- Aging tests up to 3C/cm2
- Digital FEE (Artix-7) development
- Production designs starting

µ - Filter

Target Spectrometer

2600 MDTs

700 MDTs

Dipole

Testbeam results:

FRS

RICH ECAL

900 MDTs

• μ , p and n easily resolved

A. Belias / GSI

Forward RICH

Hamamatsu H8500 MaPMT

- flat panel,
- 8x8 anode pixels of 6mm size
- 89% active area ratio
- Bialkali photocathode
- Gain: 1.5-10⁶
- Relatively cheap (≈€1800 / unit)
- Robust
- Long lifetime

- 2-layer aerogel n₁=1.050, n₂=1.047 (no gas)
- Flat mirrors only
- MaPMT readout
- MC simulated PID performance:
 - $-\pi/K$ up to P = 10 GeV/c
 - $-\mu/\pi$ up to P = 2 GeV/c

Hypernuclear Setup

Principle:

• Produce hypernuclei from captured **E**

Modified Setup:

- Primary retractable wire/foil target
- Secondary active target to capture **Ξ** and track
 - products with Si strips
- HP Ge detector for γ-spectroscopy

Priamary target:

- Diamond wire
- Piezo motored wire holder

Data Acquisition System (DAQ)

Continuous Acquisition

- Components:
 - Time distribution: SODA
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network
- Data Flow:
 - Data reduction
 - Local feature extraction
 - Data burst building
 - Event selection
 - Data logging after online reconstruction

Programmable Physics Machine

A. Belias / GSI Online selection schemes and physics algorithms are a key for successful measurements

Storage

43

Intelligent *in-situ* data processing

Detector Control System (DCS)

EPICS - Experimental Physics and Industrial Control System

- Decentralized architecture
- Freely scalable
- □ Allows "partitioning"

Schedule

- Construction of Phase 1 systems
- Installation periods
 1. Solenoid, Dipole, Supports
 - 2. All Detectors
- Commissioning with beam (protons / antiprotons)
- > Physics with antiprotons

Start Setup (Phase 1)

Full Setup (Phase 2)

San entities of PANDA

Present Status of PANDA

- Most Phase 1 detector TDRs complete
- Preparation for Construction MoUs ongoing
- Sharpened physics focus and detector start sequence

Timeline for PANDA Construction

- Construction of detector systems has started
- Pre-assembly of first components has started
- Installation at FAIR planning 2022 2023
- Commissioning with beam 2024 2025

PANDA physics with antiproton beam 2026

- Versatile physics machine with full detection capabilities
- PANDA will shed light on many of today's QCD puzzles

Opportunities for significant contributions in PANDA

Opportunities – Aspects of Contributions

Scope for R&D

- Phased schedule allows for R&D
- Detectors Phase 1 TDR process
- Detectors Phase 2
- Upgrades Higher Luminosity

• Prototype tests & developments

- Readout electronics
 - analog / digital
- DAQ algorithms FPGA, GPU
- Detector Controls software

• First of Series

- Detector module integration
- Mechanical interfaces
- Complete module operations

Production

- QA/QC processes
- Construction, mechanics, supports
- Detector module assembly
- Overall detector integration

→ Explore Opportunities & Synergies GLUEX - PANDA