(e, e'pp)/(e, e'p) ratios and the Generalized Contact Formalism CLAS Nuclear Physics Working Group Meeting

Axel Schmidt

MIT

March 7, 2019

My controversial claim:

Our EG2 analysis shows the AV18 NN-interaction describing data well up to relative momenta of 1 GeV/c.

New EG2 Data Mining Analysis Note

EG2 DATA MINING ANALYSIS NOTE: Ratio of A(e, e'pp) to A(e, e'p) events in SRC kinematics

A. Schmidt,¹ J. Pybus,¹ A. Denniston,¹ A. Hrnjic,¹ E.P. Segarra,¹ F. Hauenstein,² M. Khachatrvan,² M. Duer,³ E.O. Cohen,³ E. Piasetzky,³ L. Weinstein,² and O. Hen¹

¹Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Old Dominion University, Norfolk, Virginia 23529 ³School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel

INTRODUCTION Τ.

We present an analysis of A(e, e'pp) and A(e, e'p) events in kinematics dominated by the break-up of shortrange correlated (SRC) pairs. The data analysis uses the same 5 GeV EG2 events as selected in a previously approved CLAS analysis [1] with the only addition of previously approved fiducial cuts [2] to the protons and removal of detector region with low efficiency / acceptance. We compare the measured event vields with those calculated using a new Monte Carlo event generator and a theoretical cross-section model that is detailed in Ref. [3]. While the theory model is currently only available for ¹²C, we present the measured (e, e'pp)/(e, e'p) ratios and data distributions for all measured nuclei.

II. REVIEW OF PREVIOUS ANALYSIS

We begin this analysis by using the same ROOT trees as the previously approved analysis "Probing pp-SRC in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb using the A(e, e'p) and A(e, e'pp) Reactions" [1] and published in Refs. [4–6].

New EG2 Data Mining Analysis Note

1 Previous EG2 analyses selected SRC break-up events.

- 2 We have a new formalism, event generator to simulate SRC break-up events.
 - Key input: 2-body wave function from *NN*-interaction
- **3** By comparing data to our generator, we can test short-distance *NN*-interaction.

In my talk today:

- **1** Short-Range Correlations
- 2 Generalized Contact Formalism
- **3** Data-Theory comparisons

4 Results

In my talk today:

1 Short-Range Correlations

- 2 Generalized Contact Formalism
- **3** Data-Theory comparisons

4 Results

Short-range correlations are universal in nuclei.

 Pair with close-proximity high relative momentum

Short-range correlations are universal in nuclei.

- Pair with close-proximity high relative momentum
- Universal in nuclei:
 ≈ 20% of nucleons

Short-range correlations are universal in nuclei.

- Pair with close-proximity high relative momentum
- Universal in nuclei: $\approx 20\%$ of nucleons
- Lead to high-momentum tails

SRC pairs are predominantly neutron-proton.

Evidence has come from EG2 data mining!

np-dominance arises from the tensor force.

Scalar part of the NN interaction

Distance

How does np-dominance evolve with momentum?

Previous EG2 analyses have identified (e, e'pp) and (e, e'p) events in SRC break-up kinematics.

- O. Hen et al., "Probing pp-SRC in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb using the A(e, e'p) and A(e, e'pp) Reactions"
 Published in Science 346 pp 614–617 (2014)
- E. O. Cohen et al., "Extracting the center-of-mass momentum distribution of *pp*-SRC pairs in ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb" (2018) Published in **Phys. Rev. Lett. 121 092501 (2018)**

Our analysis begins with these ROOT trees.

0.4 < p_{miss} < 1.0 GeV/c
 x_B > 1.2

- 0.4 < *p*_{miss} < 1.0 GeV/*c*
- *x_B* > 1.2
- $0.62 < |\vec{p}_{\text{lead}}|/|\vec{q}| < 0.96$
- $\bullet \ \theta_{pq} < 25^{\circ}$
- $m_{\rm miss} < 1.1~{
 m GeV}/c^2$
- e⁻ fiducial cuts
- p fiducial cuts

We also make fiducial cuts around dead areas in three sectors.

- Event must pass A(e, e'p) cuts, and have a second proton
- Second proton must pass fiducial cuts
- $p_{\rm rec} > 0.35 ~{\rm GeV}/c$

A(e, e'pp)/A(e, e'p) ratio

In my talk today:

- 1 Short-Range Correlations
- 2 Generalized Contact Formalism
- **3** Data-Theory comparisons

4 Results

Generalized Contact Formalism

$$\Psi(k_{ij}\gg k_F)\longrightarrow ilde{arphi}(k_{ij}) imes A(K_{ij},ec{k}_{m
eq i
eq j})$$

For large
$$k$$
: $\rho_2(k) = \sum_{\alpha} C_{\alpha} |\tilde{\varphi}_{\alpha}(k)|^2$

 $\tilde{\varphi}(k)$ is a 2-body solution to the Schrödinger eq. for an NN interaction.

See: R. Weiss et al., PLB 780 (2018) 211-215 and R. Weiss et al., arXiv:1806.10217

GCF Event Generator

$$d\sigma \sim \sigma_{eN} \cdot n(\vec{p}_{CM}) \cdot \sum_{\alpha} C_{\alpha} |\tilde{\varphi}_{\alpha}(k)|^2$$

Additional effects in the generator:

- Radiative effects (via peaking approx.)
- Transparency

Single-charge exchange $(p \leftrightarrow n)$

$$\begin{split} Y^{Exp}_{A(e,e'pp)} = & Y^{GCF}_{A(e,e'pp)} \cdot P^{pp}_{A} \cdot T_{A,pp} + \\ & Y^{GCF}_{A(e,e'np)} \cdot p^{[n]p}_{A} \cdot T^*_{A} + \\ & Y^{GCF}_{A(e,e'pn)} \cdot P^{p[n]}_{A} \cdot T^*_{A}, \end{split}$$

$$Y_{A(e,e'p)}^{Exp} = (Y_{A(e,e'pp)}^{GCF} + Y_{A(e,e'pn)}^{GCF}) \cdot P_{A}^{p} \cdot T_{A,p} + Y_{A(e,e'np)}^{GCF} \cdot P_{A}^{[n]p} \cdot T_{A}^{*} + Y_{A(e,e'np)}^{GCF} \cdot P_{A}^{[n]n} \cdot T_{A}^{*},$$

(1)

In my talk today:

- 1 Short-Range Correlations
- 2 Generalized Contact Formalism
- **3** Data-Theory comparisons
- 4 Results

Data-Theory comparison

- 1 Generate MC events
- 2 Acceptance using fast MC
- **3** Smear *e*⁻ and *p* momenta
- 4 Event selection cuts
- 5 Fiducial cuts

Simulated acceptance during EG2

Systematic Uncertainties

Simulate many universes with randomly varied model parameters:

- Pair center-of-mass motion
- Nuclear contacts
- SCX probabilites
- Transparency factors

- Residual excitation energy
- Relative momentum cut-off
- e⁻ momentum resolution
- *p* momentum resolution

In my talk today:

- 1 Short-Range Correlations
- 2 Generalized Contact Formalism
- **3** Data-Theory comparisons

4 Results

For the results I'm showing:

Carbon only

Only target for which we have reliable contact values

Three different NN interactions

- AV18
- Local χ PT (cut-off: 1 fm)
- Non-local χ PT (cut-off: 600 MeV/c)

■ Theory curves are normalized to data (*e*, *e*′*p*)

Missing Momentum Distributions

Missing Momentum Distributions

Many other distributions are included in the note.

Missing Energy vs. Missing Momentum

(e, e'pp)/(e, e'p) Ratio

Conclusions

- GCF agrees with EG2 data.
- AV18 works well, even up to 1 GeV/c.
- New constraints on NN interaction at high-momentum

BACK-UP

Fast vs. Full MC

