Hall B - Run Group K Color Confinement and Strong QCD Status Update

E12-16-010 A Search for Hybrid Baryons in Hall B with CLAS12

Annalisa D'Angelo

E12-16-010A Nucleon Resonance Structure Studies Via Exclusive KY Electroproduction

at 6.6 GeV and 8.8 GeV

Daniel Carman

E12-16-010B Deeply Virtual Compton Scattering with CLAS12 at 6.6 GeV and 8.8 GeV

Latifa Elouadrhiri

Approved:

- ✓ 50 PAC days at 8.8 GeV
- √ 50 PAC days at 6.6 GeV

Assigned:

- ✓ 6.0 PAC days at 7.5 GeV
- ✓ 3.5 PAC days at 6.5 GeV

Data Taken:

- ✓ 5.5 PAC days at 7.5 GeV
- ✓ 4.0 PAC days at 6.5 GeV

Main Questions to Address

• The N* spectrum: what is the role of glue?

Search for new baryon states E12-16-010

How do massless quarks acquire mass?

Measure the Q² dependence of electrocoupling amplitudes E12-16-010A

 How is color confinement realized in the force and pressure distributions and stabilize nucleons?

Study GPDs and their moments from DVCS F12-16-010B

Run Group Proposal (RG K)

"Color Confinement and Strong QCD"

Hybrid Baryons E12-16-010	Search for hybrid baryons (qqqg) focusing on 0.05 GeV ² < Q ² < 2.0 GeV ² in mass range from 1.8 to 3 GeV in KΛ, Nππ, Nπ (A. D'Angelo, V. Burkert, D.S. Carman, V. Mokeev, E. Golovach, R. Gothe)
KY Electroproduction E12-16-010A	Study N* structure for states that couple to KY through measurements of cross sections and polarization observables that will yield Q² evolution of electrocoupling amplitudes (D.S. Carman, V. Mokeev, R. Gothe)
DVCS E12-16-010B	Access GPDs H, E, \widetilde{H} , \widetilde{E} using DVCS process ep \rightarrow ep γ and the DVMP process ep \rightarrow ep π^0 (L.Elouadrhiri, F.X. Girod)

Run Group conditions 100 days approved by PAC44:

 $E_{\rm b}$ = 6.6 GeV, 50 days

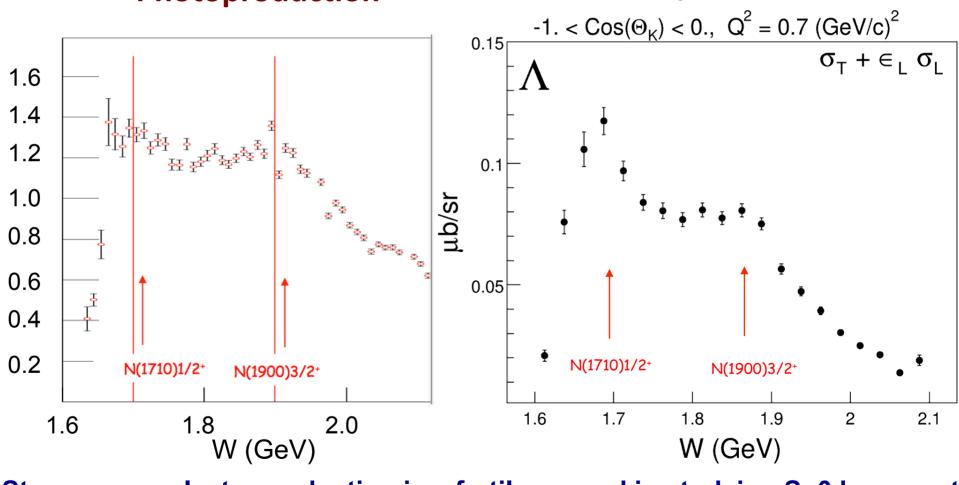
 $E_{\rm b}$ = 8.8 GeV, 50 days

- Torus I = -3375 A (negatives outbending) 100%
- Solenoid = 100%
- FT ON, MM, RICH
- Polarized electrons, unpolarized LH₂ target
- L = $1x10^{35}$ cm⁻²s⁻¹

Evidence for New N* in KY and other Final States

State N(mass)J ^P	PDG pre 2010	PDG 2018	ΚΛ	ΚΣ	Nγ
N(1710)1/2+	***	***	****	**	***
N(1880)1/2 ⁺		***	**		**
N(1895)1/2 ⁻		***	**	*	**
N(1900)3/2 ⁺	**	***	***	**	***
N(1875)3/2 ⁻		***	***	**	***
N(2120)3/2 ⁻		***	**		**
N(2000)5/2 ⁺	*	**	**	*	**
N(2060)5/2 ⁻		***		**	**

Study these states in electroproduction and extend to higher masses



Studying Baryons in $\gamma^*p \rightarrow K\Lambda/\Sigma$?

Photoproduction

CLAS Collaboration Meeting - March 6th 2019

Electroproduction

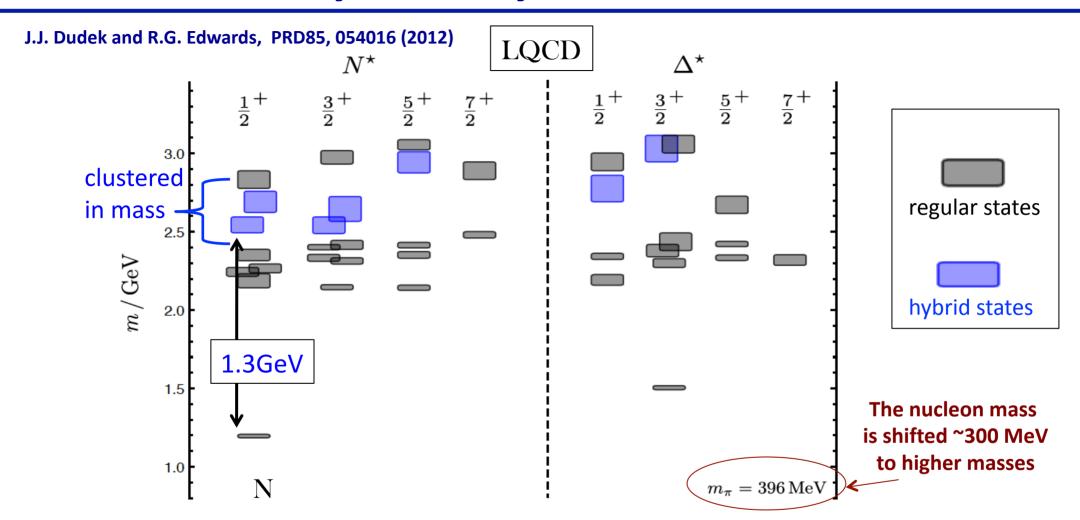
➤ Strangeness electroproduction is a fertile ground in studying S=0 baryon states with masses above 1.6 GeV.

Hybrid Baryons: Baryons with Glue as a Structural Component

Hybrid hadrons with dominant gluonic contributions are predicted to exist by QCD.

Experimentally:

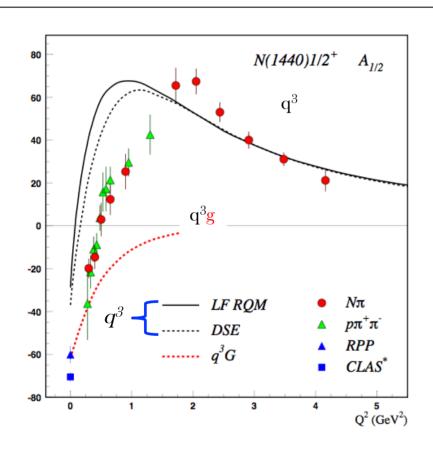
- **Hybrid mesons** $|q\overline{q}g\rangle$ states may have exotic quantum numbers J^{PC} not available to pure $|q\overline{q}\rangle$ states \longrightarrow GlueX, MesonEx, COMPASS, PANDA
- **Hybrid baryons** $|qqqg\rangle$ have the same quantum numbers J^P as $|qqq\rangle$ \longrightarrow exclusive electroproduction with CLAS12 (Hall B).

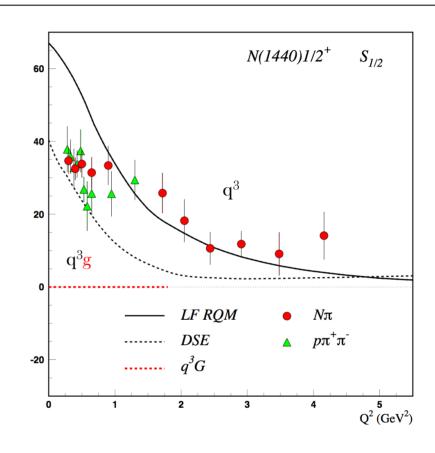

Theoretical predictions:

- ♦ MIT bag model T. Barnes and F. Close, Phys. Lett. 123B, 89 (1983).
- ♦ QCD Sum Rule L. Kisslinger and Z. Li, Phys. Rev. D 51, R5986 (1995).
- → Flux Tube model S. Capstick and P. R. Page, Phys. Rev. C 66, 065204 (2002).

Hybrid Baryons in LQCD

Hybrid states have same J^P values as qqq baryons. How to identify them?


- Overpopulation of N 1/2⁺ and N 3/2⁺ states compared to QM projections.
- $A_{1/2}$ ($A_{3/2}$) and $S_{1/2}$ show different Q^2 evolution. Can we do it?



Separating q³g from q³ States?

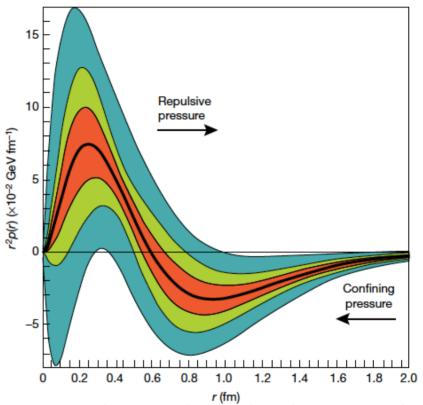
Precise CLAS results on electrocouplings clarified nature of the Roper

- A_{1/2} and S_{1/2} amplitudes at high Q² indicate 1st radial q³ excitation
- Significant meson-baryon coupling at small Q²

For hybrid "Roper", $A_{1/2}(Q^2)$ drops off faster with Q^2 and $S_{1/2}(Q^2) \sim 0$.

Accessing the Forces & Pressure on Quarks

Nucleon matrix element of EMT contains:


 $M_2(t)$: Mass distribution inside the nucleon

J (t) : Angular momentum distribution

 $d_1(t)$: Shear forces and pressure distribution

$$\int xH(x,\xi,t)dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)$$

Separate $M_2(t)$ and $d_1(t)$ through measurements at small/large ξ .

V. D. Burkert, L. Elouadrhiri & F. X. Girod Nature, 557 396-399 (2018)

Measuring these form factors, we learn about confinement forces.

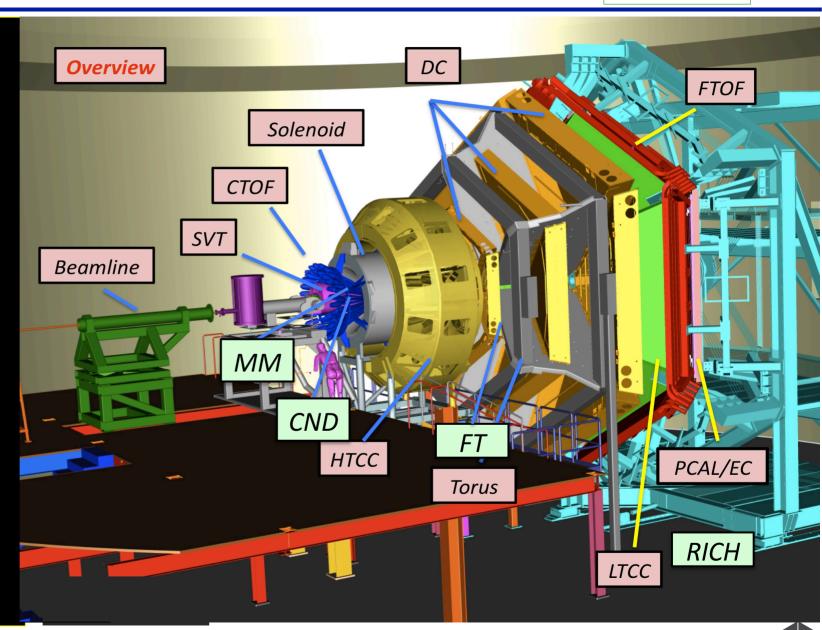
Equipment

Hall B

Forward Detector (FD)

- TORUS magnet
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward TOF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)


- SOLENOID magnet
- Silicon Vertex Tracker
- Central Time-of-Flight

Beamline

- Cryo Target
- Moller polarimeter
- Shielding
- Photon Tagger

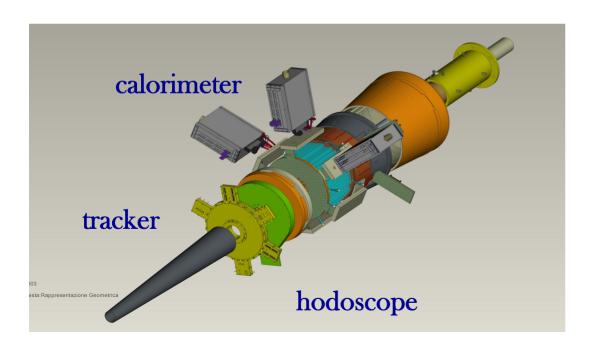
Upgrade to the baseline

- Central Neutron Detector
- MicroMegas
- Forward Tagger
- RICH detector
- Polarized target

Forward Tagger

FT designed to detect electrons and photons at small angles

FT-Cal: calorimeter to measure electron energy/

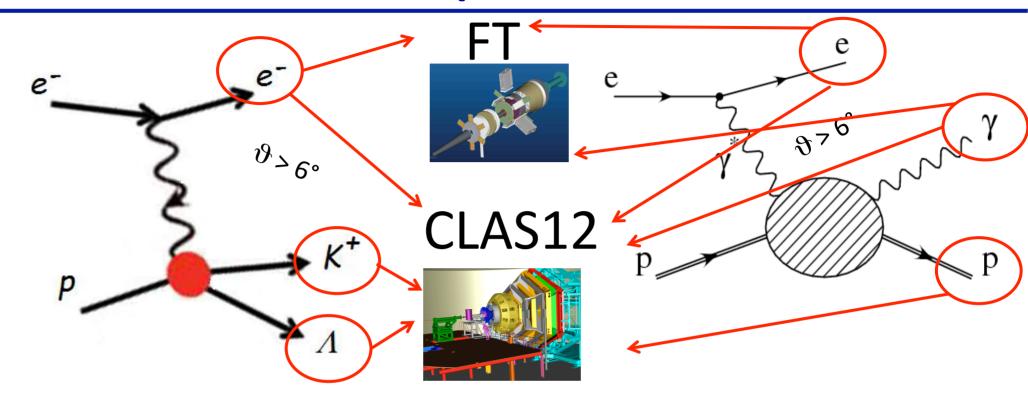

momentum

FT-Hodo: scintillation hodoscope to veto photons &

backsplash


FT-Trk: micro-mega detector to measure electron

angles, polarization plane



$$\theta = 2.5^{\circ} \rightarrow 4.5^{\circ}$$

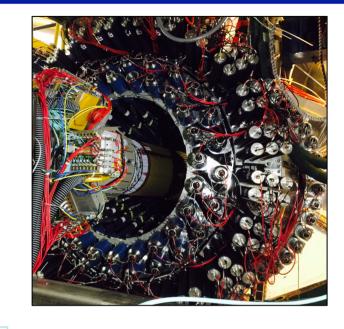
$$\frac{\sigma(E)}{E} \le \frac{0.02}{\sqrt{E \text{ (GeV)}}} + 0.01$$

The Experiment

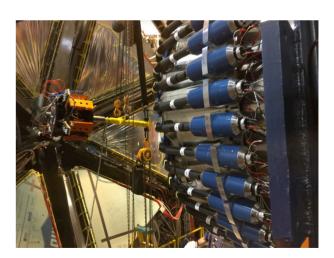
Scattered electrons and photons are detected:

- in the Forward Tagger for angles from 2.5° to 4.5°
- in the Forward Detector of CLAS12 for scattering angles greater than about 6°

Charged hadrons are measured in the full range from 6° to 130°


W < 3 GeV
$$Q^2$$
 range of interest: 0.05 - 6 GeV² $Q^2 = 4E_{Beam}E_{e'}\sin^2\frac{\vartheta}{2} \Rightarrow \vartheta < 5^\circ$

FT allows to probe the **crucial Q² range** where hybrid baryons may be identified due to their fast dropping $A_{1/2}(Q^2)$ amplitude and the suppression of the scalar $S_{1/2}(Q^2)$ amplitude.



Run Conditions

Torus Current	100% (3375 A) - negative outbending				
Solenoid	-100 %				
FT	ON @ 7.5 GeV -> OFF @ 6.5 GeV				
MM RICH	ON				
FMT	OFF				
Beam/Target	Polarized electrons, unpolarized LH ₂ target				
Luminosity	$^{\sim}$ 5 10 34 cm $^{-2}$ s $^{-1}$ @ 7.5 GeV 10 35 cm $^{-2}$ s $^{-1}$ @ 6.5 GeV FULL LUMINOSITY				

Run Group K Triggers Configurations E=7.5 GeV

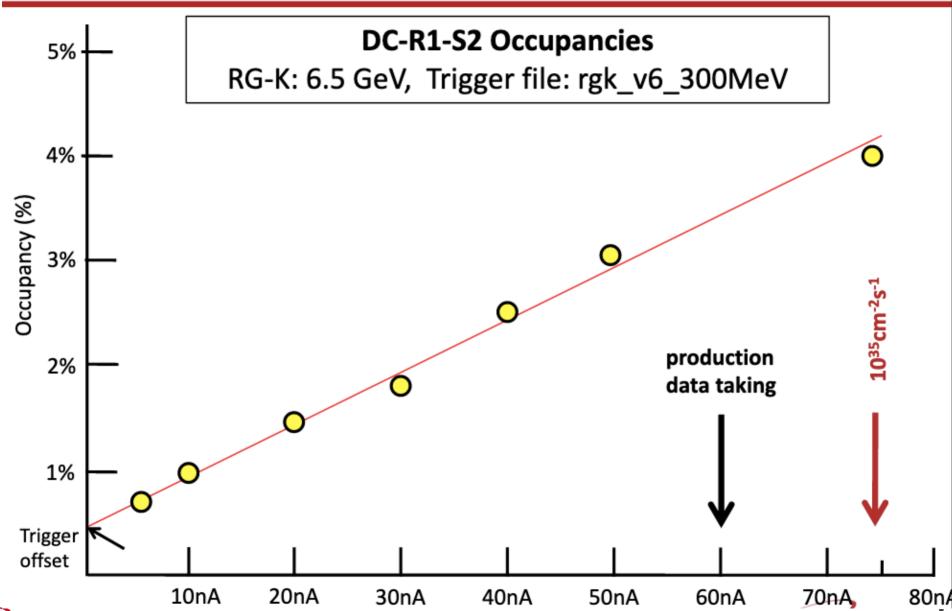
Data rate = 400 MB/sec -

Maximum electron current = 35 nA

Trigger Number	Physics Definition	Detectors Conditions	Thresholds	pre- scale	Trigger rate
0	1 electron in CLAS	(DC x HTTC x ECAL x PCAL) or (DC x HTTC x PCAL)	(PCAL+ECAL)> 300 MeV PCAL>60 MeV ECAL>10 MeV or PCAL> 300 MeV	1	11 KHz
29 (new)	Forward electron 1 forward hadron	FT (1800-6600) x DC x FTOFPCU x PCAL	PCAL>15 MeV	1	8.9 KHz

Total trigger rate = 20.5 KHz @ Lifetime = 93.5%

Data rate = 400 MB/sec — Maximum electron current = 45 nA


Trigger Number	Physics Definition	Detectors Conditions	Thresholds	pre- scale	Trigger rate
0	1 electron in CLAS	(DC x HTTC x ECAL x PCAL) or (DC x HTTC x PCAL)	(PCAL+ECAL)> 300 MeV PCAL>60 MeV ECAL>10 MeV or PCAL> 300 MeV	2	7 KHz
29 (new)	Forward electron 1 forward hadron	FT (1800-6600) x DC x FTOFPCU x PCAL	PCAL>15 MeV	1	12 KHz

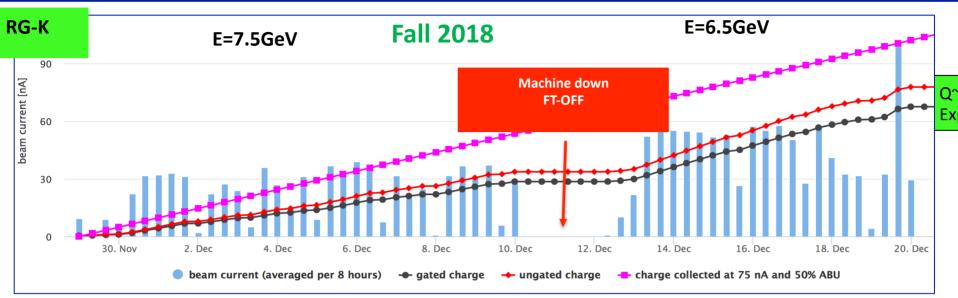
Total trigger rate = 20.5 KHz @ Lifetime = 93.5%

Drift Chamber Occupancies

Luminosity scan

Run Group K Triggers Configurations E=6.5 GeV

FT OFF Full Luminosity


Data rate = 450 MB/sec _____ Maximum electron current = 60 nA

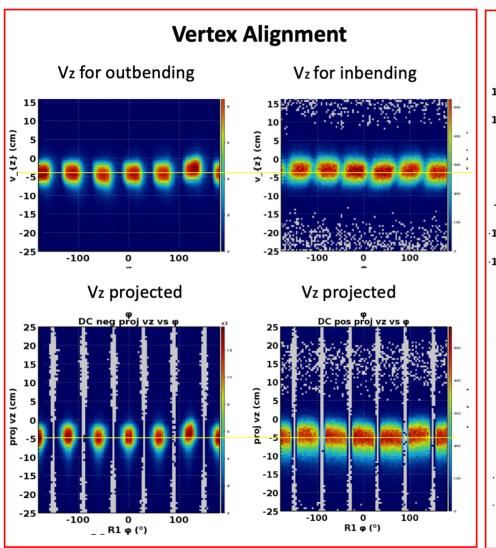
Trigger	Physics	Detectors	Thresholds	pre-	Trigger
Number	Definition	Conditions		scale	rate
0	1 electron in CLAS	(DC x HTTC x ECAL x PCAL) or (DC x HTTC x PCAL)	(PCAL+ECAL)> 300 MeV PCAL>60 MeV ECAL>10 MeV or PCAL> 300 MeV	1	25 KHz

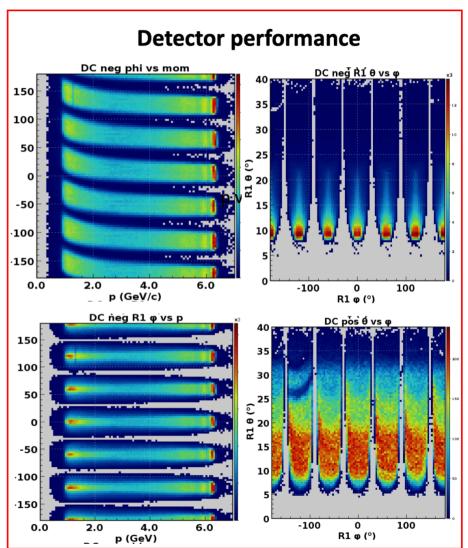
Total trigger rate = 25 KHz @ Lifetime = 91%

Run Group K Production

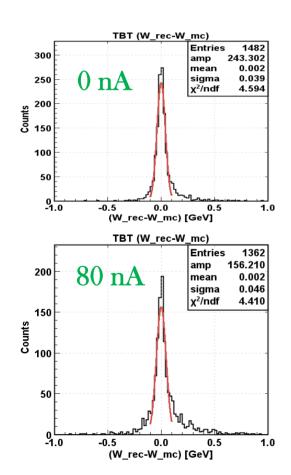
 $Q^{45}mC = 7\%$ of Expected 648mC

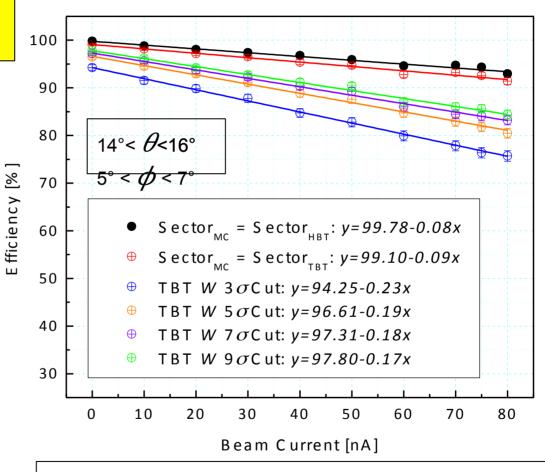
Beam Energy	Beam Current	Target	Trigger	Collected Events
7.5 GeV	35 nA	LH ₂	e in CLAS e in FT + 1 Fwd Hadron	3.5 G
7.5 GeV	435 nA	LH ₂	e in CLAS - prescaled e in FT + 1 Fwd Hadron	4.3 G
6.5 GeV	60 nA	LH ₂	e in CLAS	7.8 G


EVENTS


15.6 G

RG-K Run 5990 Alignment

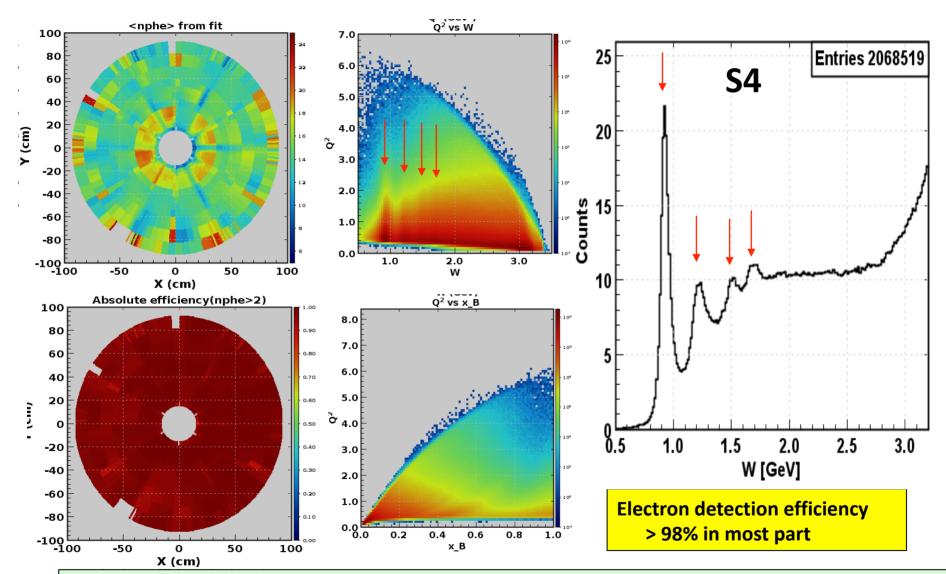

With few exceptions all detector channels working well



FD tracking efficiency - RG-K Run Low Luminosity Runs

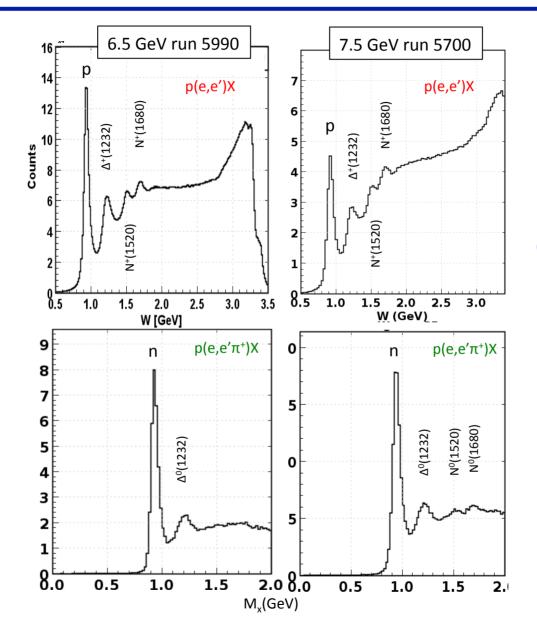
Extensive effort to understand luminosity dependence of event reconstruction efficiency.

 $\mu^- p \rightarrow \mu^- p$ 6.5 GeV Use μ' s to avoid radiative tail


Realistic Simulations critical for normalized results

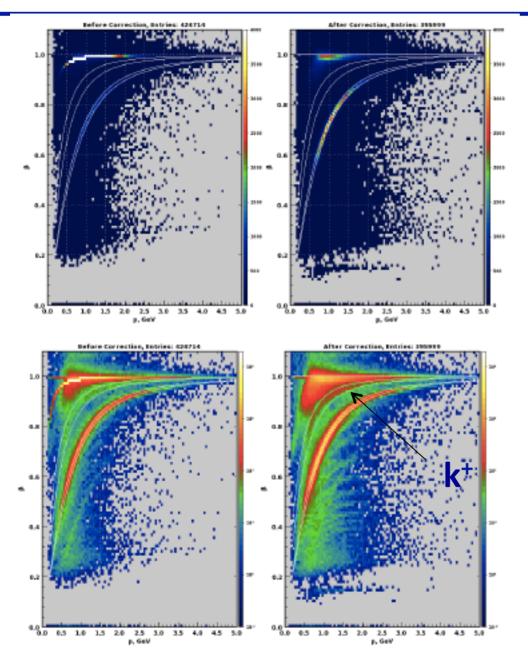
19

RGK 6.5 GeV p(e,e')X


The number of events corresponds to about 0.0025% of expected RG-K 6.5GeV data of 2018

RGK 6.5 GeV p(e,e')X p(e,e' π ⁺)X

electron detected in CLAS


All sectors combined

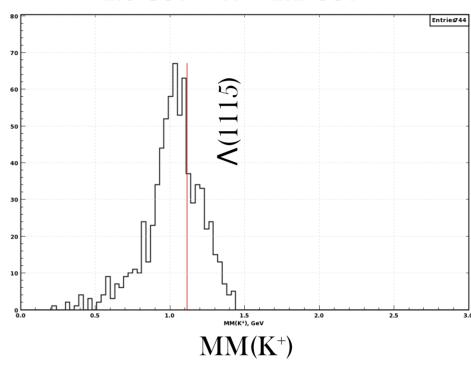
RGK 7.5 GeV Start time correction

electron detected in FT

Event start time should be corrected using the FT start time

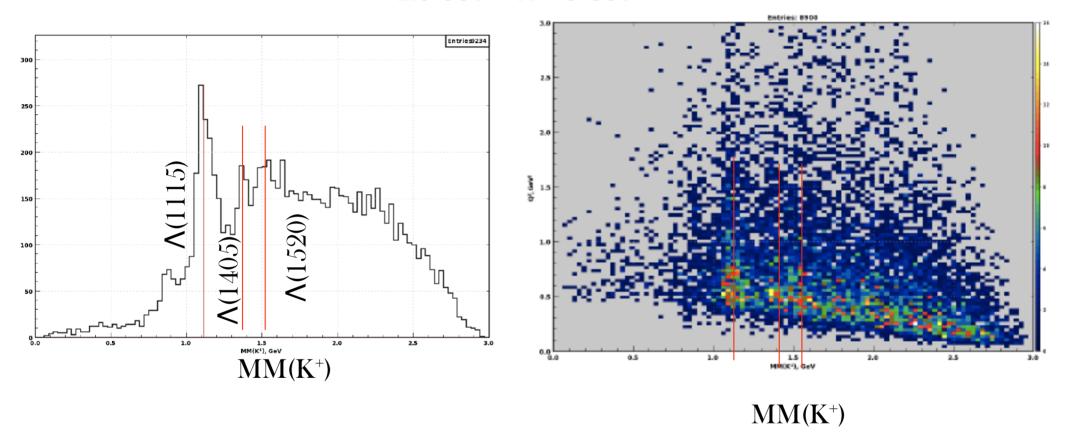
new value for β

better particle ID



1.6 GeV < W < 3 GeV

1.6 GeV < W < 2.2 GeV


~500 KY events among 2.5M FT triggers ——> 920 10³ KY events from all 7.5 GeV runs (4.6 G FT triggers)

 $0.05 \text{GeV}^2 < Q^2 < 0.35 \text{GeV}^2$

1.6 GeV < W < 3 GeV

 $0.5 \text{GeV}^2 < Q^2 < 2 \text{ GeV}^2$

Manpower

Run group K experiments benefits of the collaboration with similar experiment of Run group A running at 10 GeV:

E12-06-108A Exclusive N* -> KY Studies with CLAS12 - D.S. Carman

• E12-06-119 (a) Deeply Virtual Compton Scattering - F. Sabatie

Same analysis working group of Run Group A will be involved.

Analysis coordinator: Annalisa .

Chef: FX Giraud

Dedicated Post-doc: Lucilla Lanza

The Run Group A Calibration Team will also be available.

Leader: Dan Carman

Pass 0 and Pass1 cooking is being implemented together with Run Group A team

Conclusions

- ✓ Run group K has successfully collected data at 6.5 GeV and 7.5 GeV.
- ✓ Full luminosity has been reached at 6.5 GeV with FT OFF
- ✓ Run conditions are similar to run Group A, but limited to negative outbending torus field and optimized trigger.
- ✓ **Trigger conditions** include: 1 electron in CLAS + 1 electron in the FT in coincidence with 1 Forward hadron in CLAS
- ✓ Manpower of run group A is foreseen to strongly contribute to calibrate and cook the data - PASS1 is planned after fall run
- ✓ Data quality is very good
- √ 7% of total expected charge has been accumulated 15.5 G events collected
 - √ ~ 3.3 M KY total events

