Nuclear Physics Working Group Summary Report

M. H. Wood, Canisius College

March 8, 2019

Conferences

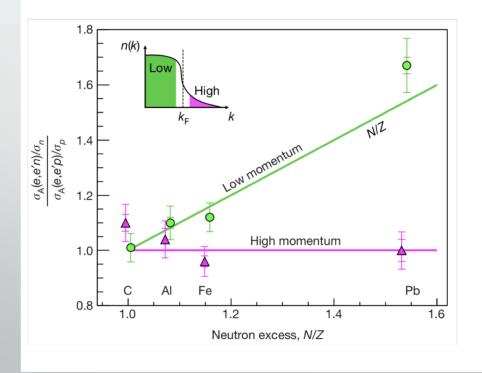
Since November 2018 meeting, there were 5 presentations.

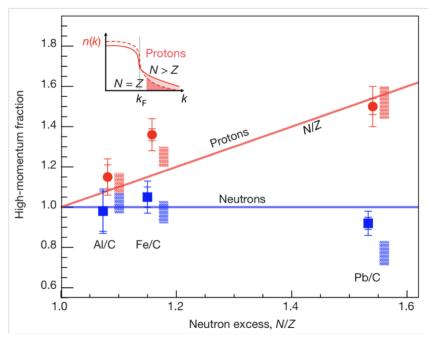
Contributed 1 (not notified) General – 4 (2 notified)

Active Reviews

- Neutral pion electroproduction ratios off C, Fe, and Pb to D,
 - T. Mineeva et al. (analysis review)
- Validation of neutrino energy estimation using electron scattering data,
 - L. Weinstein et al. (analysis review)
- Coherent DV π °P with CLAS EG6, F. Cao et al. (analysis review)
- Ratio of A(e, e'pp) to A(e, e'p) events in SRC kinematics,
 - A. Schmidt et al. (analysis review)

10:30 - 12:00 Nuclear Physics Working Group - II Convener: Dr. Michael Wood (Canisius College) Location: A110 - https://bluejeans.com/7168882426 BSA of Coherent π^0 DVMP on Helium-4 20° 10:30 Speaker: Mr. Frank Cao (UConn) Material: Slides Validation of neutrino energy estimation using electron scattering data 20' 10:50 Speaker: Mariana Khachatryan (ODU) Material: Slides 11:10 **Electrons for Neutrinos - Simulations 20'** Speakers: Afroditi Papadopoulou (MIT), Adi Ashkenazi (MIT) Material: Slides 📆 11:30 Update on the Analysis of Color Propagation of pi+ 20' Speaker: Sebastian Moran (UTFSM) Material: Slides 📆


08:30 - 10:00 Nuclear Physics Working Group - I Convener: Dr. Michael Wood (Canisius College) Location: A110 - https://bluejeans.com/7168882426 08:30 **NPWG Business 10'** Speaker: Dr. Michael Wood (Canisius College) Material: Slides 📆 08:40 3He/4He (e,e'p) and (e,e'n) 20' Speaker: Peninah Levine (MIT) Material: Slides 📆 A(e,e'pn) detecting the n in the TOF 20' 09:00 Speaker: Dr. Igor Korover (NRCN) Material: Slides 📆 09:20 (e,e'pp)/(e,e'p) ratios and the GCF 20' Speaker: Axel Schmidt (MIT) Material: Slides 📆 Analysis Updates on the EG2 Lambda Study 20' 09:40 Speaker: Dr. Taya Chetry (Mississippi State University) Material: Slides 📆

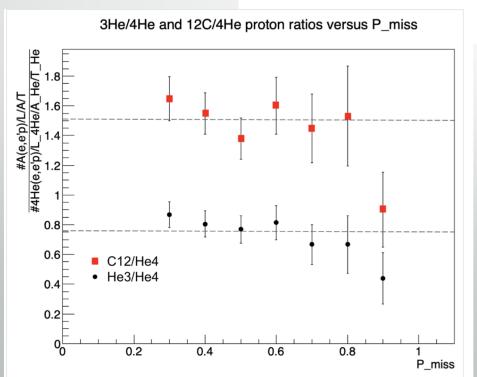

Probing 2N-SRC via (e,e'N) reactions off ^{3,4}He (¹²C)

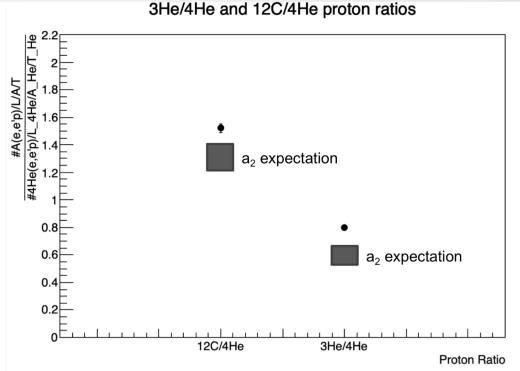
Using e2a data

Peninah Levine March 7, 2019

SRC in n. Rich systems

¹²C / ⁴He (e,e'p)


 3 He / 4 He (e,e'p)



Stat. uncertainties only

Sys. Uncertainties:

Iuminosity (~2%)
Transparency
Cut sensitivity
P_{miss} (in)dependence

A(e,e'p)/A(e,e'n) ratios

Nucleus	(#(e,e'p)/Z/sigma _{ep}) / (#(e,e'n)/N/sigma _{en})	
⁴ He	1.05 ± 0.2	
12 C	1.00 ± 0.2	

A(e,e'pn) detecting Neutrons in TOF counters

Igor Korover NRCN & Tel Aviv University

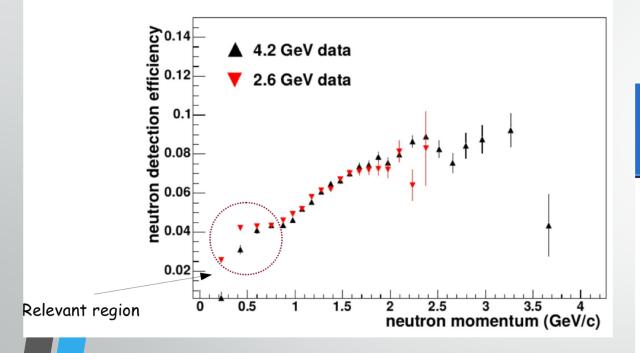
Motivation

Search for Short Range Correlation using A(e,e'pn) reaction

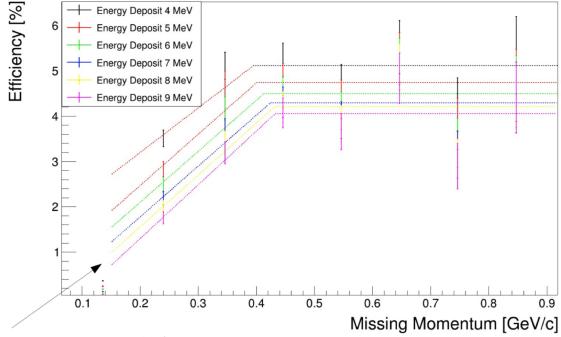
Complimentary analysis to A(e,e'pp)

Advantages over A(e,e'np) (knocked out neutron detected in EC)

Better missing momentum resolution (same as A(e,e'pp) analysis)



A(e,e'pn)/A(e,e'p) as function of missing momentum

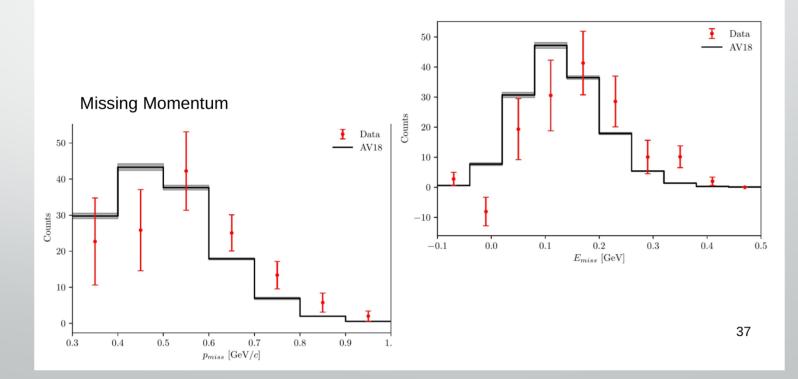

A(e,e'pp) and A(e,e'pn) Allows better comparison to NN-interaction calculations (using the generator)

Previous analysis

CLAS Analysis Note 2008-103

Absolute neutron detection efficiency

Efficiency measurement below 0.25 GeV/c is not reliable


C(e,e'pn)/C(e,e'p) Result

Kinematic variable comparison to the generator prediction

 E_p - Energy of knocked out proton

Comparison between missing energy

$$E_{\text{miss}} = \sqrt{(\omega + m_{Carbon} - E_p)^2 - p_{\text{miss}}^2} + m_n - m_{Carbon}$$

(e, e'pp)/(e, e'p) ratios and the Generalized Contact Formalism

CLAS Nuclear Physics Working Group Meeting

Axel Schmidt

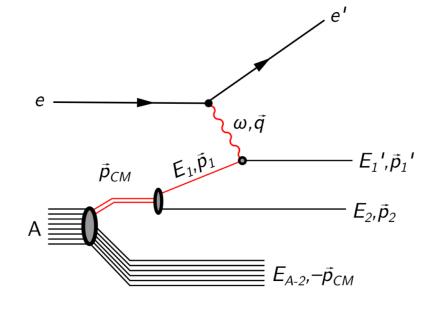
MIT

March 7, 2019

New EG2 Data Mining Analysis Note

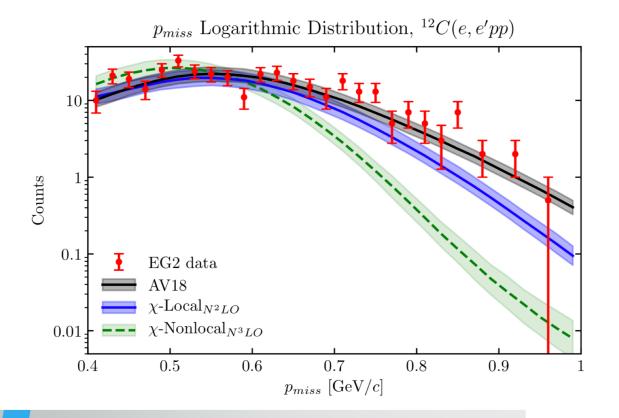
- 1 Previous EG2 analyses selected SRC break-up events.
- 2 We have a new formalism, event generator to simulate SRC break-up events.
 - Key input: 2-body wave function from *NN*-interaction
- 3 By comparing data to our generator, we can test short-distance NN-interaction.

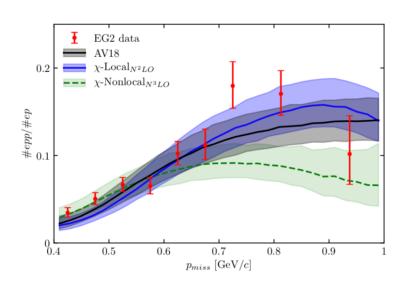
Generalized Contact Formalism


$$\Psi(k_{ij}\gg k_F)\longrightarrow \tilde{\varphi}(k_{ij})\times A(K_{ij},\vec{k}_{m\neq i\neq j})$$

For large
$$k$$
: $\rho_2(k) = \sum_{\alpha} C_{\alpha} |\tilde{\varphi}_{\alpha}(k)|^2$

 $ilde{arphi}(k)$ is a 2-body solution to the Schrödinger eq. for an NN interaction.


See: R. Weiss et al., PLB 780 (2018) 211-215 and R. Weiss et al., arXiv:1806.10217


GCF Event Generator

$$d\sigma \sim \sigma_{eN} \cdot n(\vec{p}_{CM}) \cdot \sum_{\alpha} C_{\alpha} |\tilde{\varphi}_{\alpha}(k)|^{2}$$

Missing Momentum Distributions

- GCF agrees with EG2 data.
- AV18 works well, even up to 1 GeV/c.
- New constraints on *NN* interaction at high-momentum

Study of neutrino energy reconstruction using electron scattering data

Mariana Khachatryan - ODU

Neutrino Energy Reconstruction for QE reactions

Cherenkov detectors:

- Detect: e-, muons & pions.
- Miss: protons and neutrons.

Lepton kinematics: [(e,e') or(v,l)]

$$E_{\text{QE}} = \frac{2M\varepsilon + 2ME_1 - m_l^2}{2(M - E_1 + |k_1|\cos\theta)}$$

 $\varepsilon \approx 20$ MeV single nucleon separation energy

M-nucleon mass

 m_1 outgoing lepton mass

 k_1 – lepton three momentum

 θ – lepton scattering angle

Tracking detectors:

- Detect: Charged particles $+\pi^0$.
- Miss: Neutrons and charge particles below threshold.

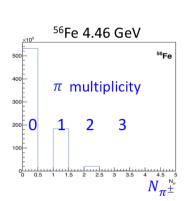
Final state Calorimetry [(e,e'pX) or (v,lX)]

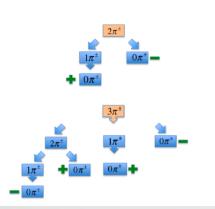
$$E_{\text{Cal}} = E_e^{'} + \sum T_p + E_{\text{Binding}} + \sum E_{\pi}$$

 E_{Binding} – Binding energy

 T_p – kinetic energy of knock out proton

 $E_{e}^{'}$ – energy of scattered electron


 E_{π} – energy of produced meson


Background Subtraction in (e,e') analysis

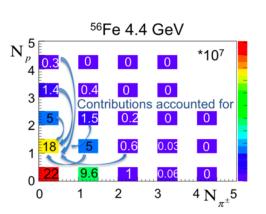
Neutrino analysis select 0 π events to maximize QE sample.

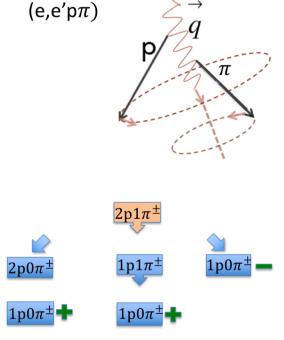
Data Driven Correction:

- 1. Use measured (e,e' π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract undetected (e,e' π) contributions,
- 4. New: Do the same for 2π , 3π .

е

 $(e,e'\pi)$


Background Subtraction in (e,e'p) analysis


e

Subtract for undetected π and multiple p.

Data Driven Correction:

- 1. Use measured (e,e'p π) events,
- 2. Rotate π around q to determine its acceptance,
- 3. Subtract (e,e'p π) contributions
- 4. New: do the same for 2p, 3p 2p+ π etc

Large A dependence

$$E_{\text{Cal}} = E'_e + T_p + E_{\text{Binding}}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

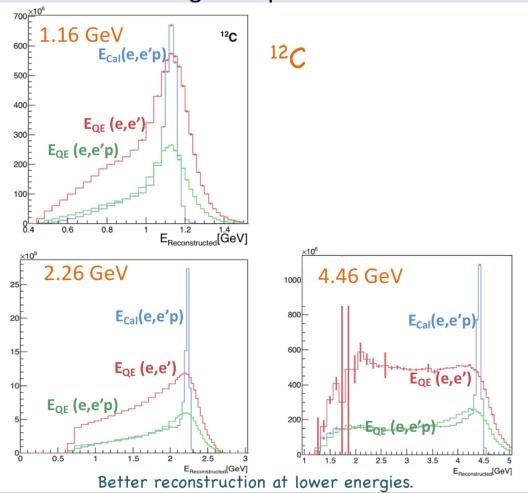
$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$

$$E_{QE} = \frac{2M\varepsilon + 2ME_I - m_i^2}{2(M - E_I + |k_I|\cos\theta)}$$


$$E_{QE} = \frac{2M\varepsilon + 2M\varepsilon + 2M\varepsilon$$

1. E_{QE} has worse peak resolution than $E_{Cal.}$ 2.Same tail for $E_{QE}+E_{Cal.}$

3.⁵⁶Fe is predominantly tail.

4.56Fe is much worse than 4He.

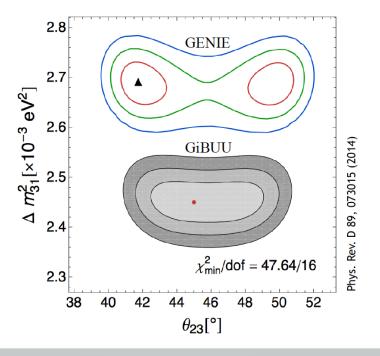
Large E dependence

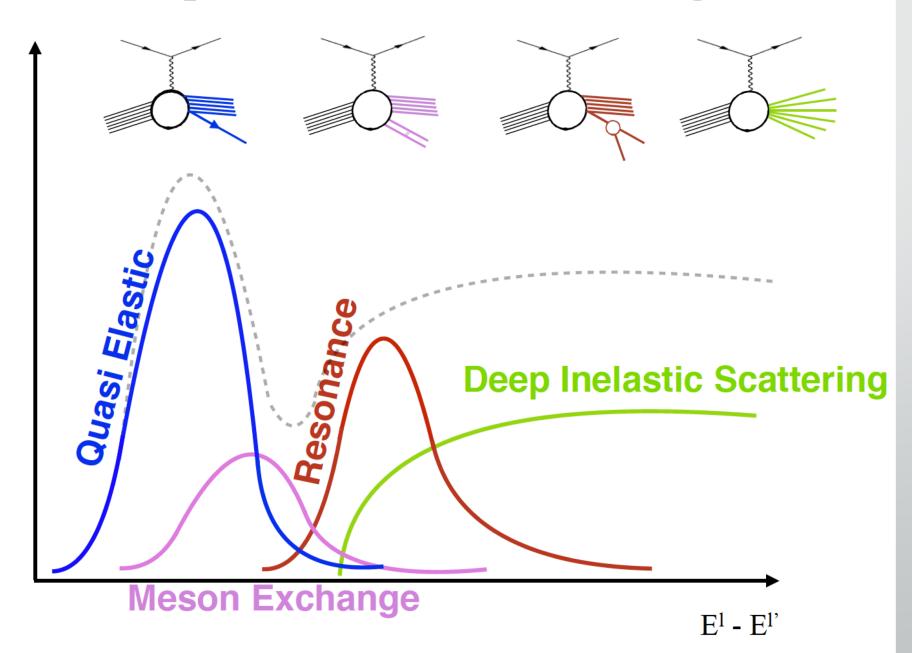
Electrons for Neutrinos Simulation

Afroditi Papadopoulou, Adi Ashkenazi (MIT)

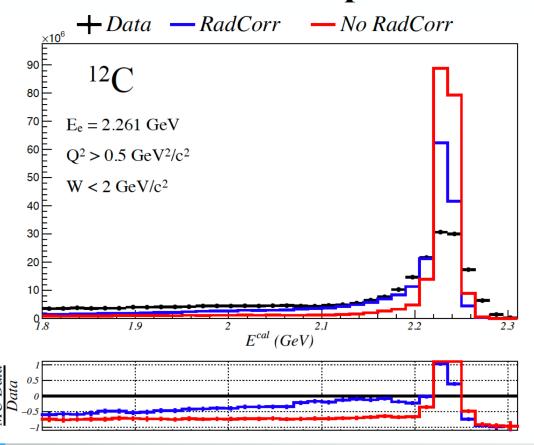
vA Interaction Modelling

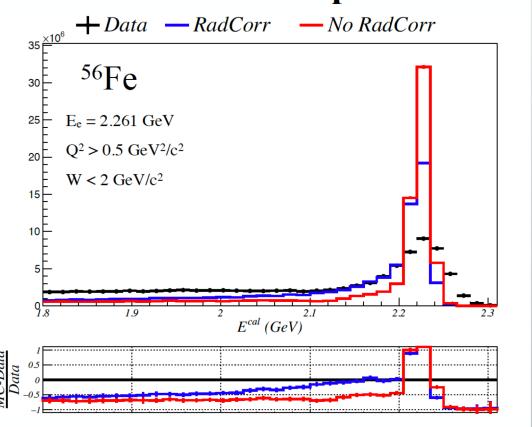
Neutrino event generators are used to simulate a vA interaction


Among those:



and many more


Nuclear uncertainties are significant


E_{\nu} Reco Requires Interaction Modeling

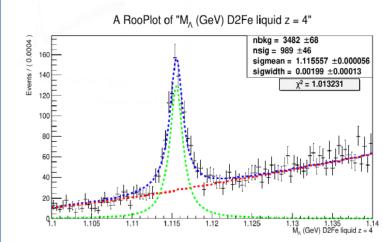
Data to Simulation Comparison

Data to Simulation Comparison

Analysis Updates on the EG2 Λ Study

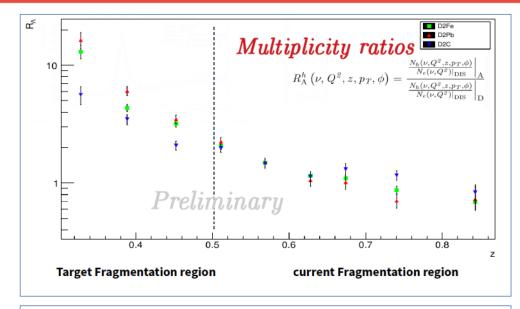
Taya Chetry

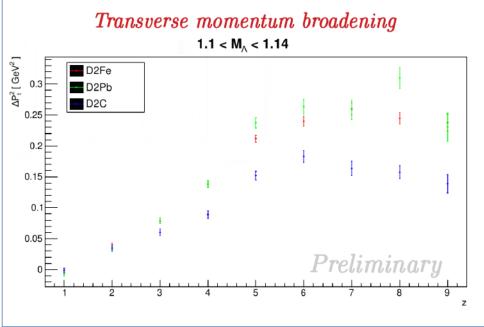
Lamiaa El Fassi Mississippi State University


CLAS Collaboration Meeting 03/07/2019

Λ Hadronization study using CLAS eg2

Summary




Λ yield extraction:

Event mixing/combinatorial background and Breit-Wigner combined using χ^2 minimization (RooFit).

Ongoing and Future directions:

- Validation of PYTHIA event generator: Nice looking Λ invariant mass peaks for different targets.
- Acceptance corrections: GSIM+GPP+ RECSIS. Compare simulated to exptl. data
- Radiative corrections.
- Systematic Studies: such as PID, etc.
- Study other dependencies of R_{Λ} , P_{T}^{2} , Cronin effect, etc.

Color Propagation Analysis Updates for Pi Plus

Sebastián Morán Vásquez

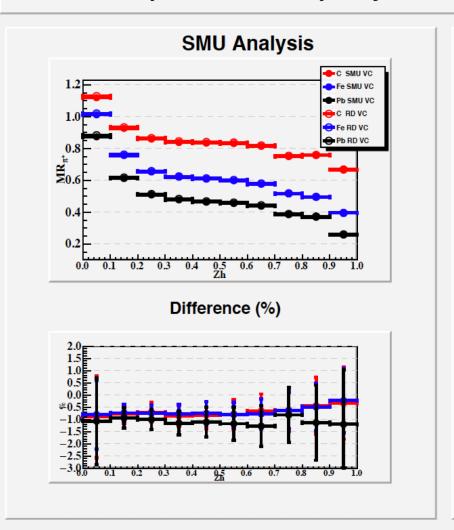
Universidad Técnica Federico Santa María Physics Department Casa Central, Valparaíso

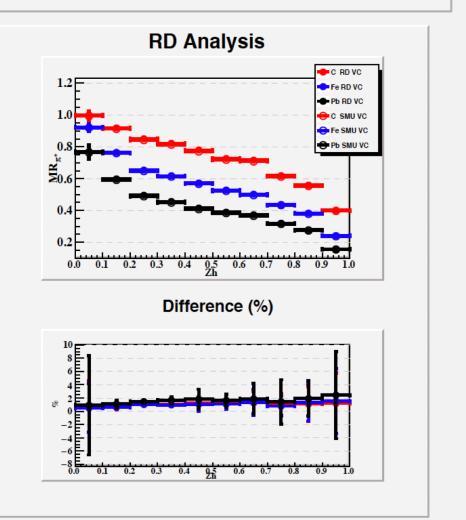
7 de marzo de 2019

Situation:

We have two independent analysis, here we call them:

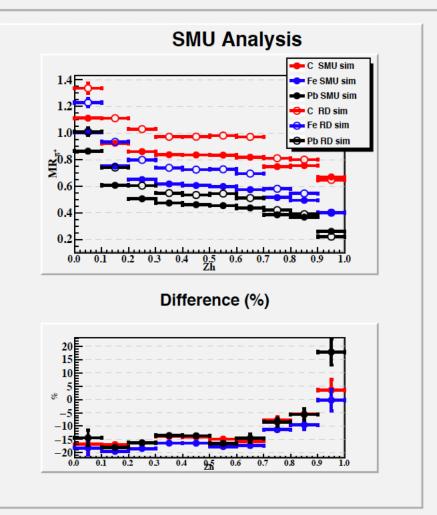
- Santa Maria University analysis (SMU).
- Raphael Dupre Analysis (RD).

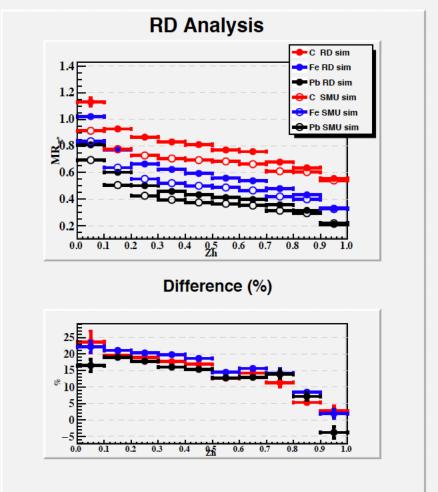

which give different final results.


What are the differences between the analysis?

- The selection criteria (Particle Identification).
- The Vertex cuts, for electrons.
- The Set of Simulations.
- The Method of doing the Acceptance Correction.
 - ullet USM o Bin by Bin base Correction.
 - ullet RD o Event by Event base Correction.
- Number of variables consider in the Acceptance Correction:
 - USM \rightarrow Zh , Q2, P_t^2 , Xb and PhiPQ bins (this is called 5D case).
 - RD \rightarrow Zh , Q2, P_t^2 and Xb bins (this is called 4D case).

There are two sets of vertex cuts. If we mixed them


Comparison of Multiplicity Ratios integrated over (Xb, Pt2, Q2, PhiPQ)



If we only mixed the set of simulations.

Comparison of Multiplicity Ratios integrated over (Xb, Pt2, Q2)

BSA of Coherent π^0 DVMP on Helium-4

Frank Thanh Cao

Advisor: K. Joo

Co-Advisor: K. Hafidi

University of Connecticut

March 2019

When embedded in the nucleus,

- What about proton changes?
- ▶ What remains the same?

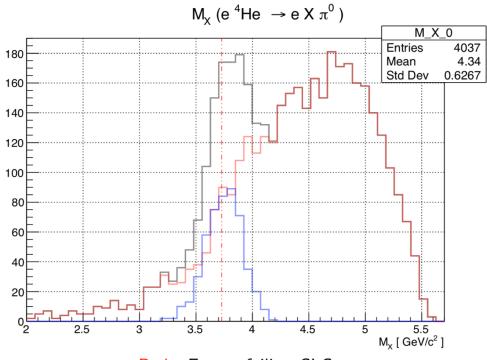
Accessing the nuclear generalized parton distributions (GPDs) and form factors (FFs) are a way to approach and answer these questions.

Measuring beam-spin asymmetries (BSA) from DVCS and DVMP processes help to uncover these intricate math. objects.

Nuclear targets offer two distinct channels:

- Coherent (Nucleus stays intact)
- ► Incoherent (Nucleon breaks off and traverses nuclear medium)

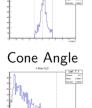
Enter the CLAS EG6 Experiment

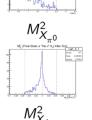

Start with the simplest dense stable nucleus: ⁴He.

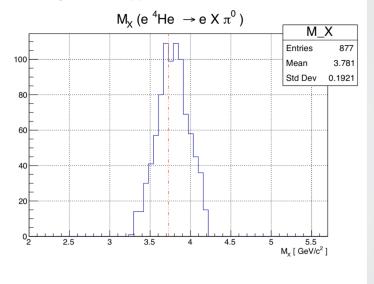
Measure the BSA for exclusive processes to get at nuclear and modified nucleonic FFs and GPDs.

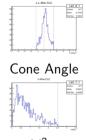
	Channel	Process		BSA
		DVCS:	$\left({\it e}^{-4}{ m He},{\it e}^{-4}{ m He}\;\gamma ight)$	Published ¹
	Coherent	DVMP:	$ \left(e^{4}\text{He}, e^{4}\text{He} \pi^{0}\right) $ $\left(e^{4}\text{He}, e^{4}\text{He} \eta\right)$	This talk Stats. too low
	Incoherent	DVCS :	$^4\mathrm{He}(e,e\;p\;\gamma)X$	Under review
		DVMP:	$^4\mathrm{He}\left(e,e\;p\;\pi^0 ight)X$ $^4\mathrm{He}\left(e,e\;p\;\eta ight)X$	Work in prog. ² Work in prog. ²

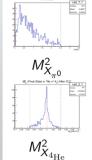
Kin. Fit Applied

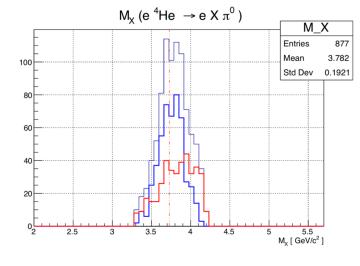

Red: Events failing CLC

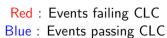

Blue: Events passing CLC


Sequential Exclusivity Cuts Applied

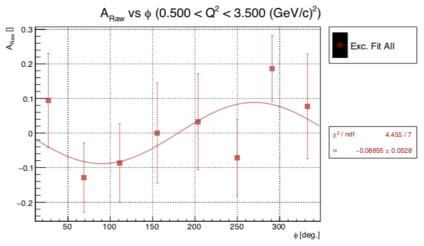






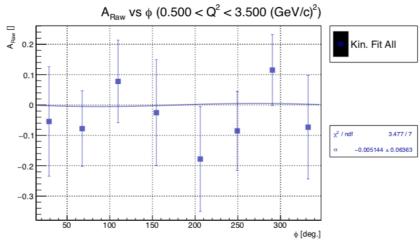


10/12


Beam-Spin Asymmetry Comparison

For

$$e^{4} \mathrm{He} \rightarrow e^{4} \mathrm{He} \ \pi^{0}$$
 , (1)


the BSA is obtained from two different event selection methods:

Exclusivity Cuts

$$BSA = -8.9 \pm 5.3 \%$$
 (800 events)

Kinematic Fit

$$BSA = -0.5 \pm 6.3 \%$$
 (537 events)

Summary

- ▶ The BSA of coherent π^0 electroproduction off $^4{\rm He}$ is consistent with 0 (-1.08±3.22%)
 - Benchmark measurement for Ji's formulation
- Event selection plays a crucial role
- Exclusivity cuts require some cleverness
 - Intimate knowledge of the dataset and reaction needed to remove background and to clean the dataset
- Kin. fitting does not
 - It uses both detector resolutions and conservation law constraints to do a fantastic job in rejecting background
 - Some of these events cannot be rejected by any obvious series of cuts
- ► Kinematic fitting should be used in more analyses!³

³The repo contains the library, FCKinFitter, with a wiki and working examples to help install, set up, and use kinematic fitting in (hopefully) an intuitive way.