

Supported by the DOE Award No.DE–SC0016583

Neutral Pion DIS Multiplicity with CLAS12 Data

CLAS collaboration Meeting - March 7 2019

Giovanni Angelini (GWU), PhD candidate

Observable: Multiplicity

Multiplicity:

 $m^{h}(x, z, dP_{hT}^{2}, Q^{2}) = \frac{d\sigma_{SIDIS}^{h}/dx dz dP_{hT}^{2} dQ^{2}}{d\sigma_{DIS}/dx dQ^{2}}$

 $m_N^h(x, z, P_{hT}^2, Q^2) = \frac{\pi F_{UU,T}(x, z, P_{hT}^2, Q^2) + \pi \varepsilon F_{UU,L}(x, z, Q^2)}{F_T(x, Q^2) + \varepsilon F_L(x, Q^2)}$

Assuming Gaussian distributions in k_T and p_T

$$m_N^h(x,z,\boldsymbol{P}_{hT}^2) = \frac{\pi}{\sum_a e_a^2 f_1^a(x)} \times \sum_a e_a^2 f_1^a(x) \underbrace{D_1^{a \to h}(z)}_{\boldsymbol{P}_1^{a \to h}(z)} \underbrace{\frac{e^{-\boldsymbol{P}_{hT}^2/\left(z^2 \langle \boldsymbol{k}_{\perp,a}^2 \rangle + \langle \boldsymbol{P}_{\perp,a \to h}^2 \rangle\right)}}{\pi \left(z^2 \langle \boldsymbol{k}_{\perp,a}^2 \rangle + \langle \boldsymbol{P}_{\perp,a \to h}^2 \rangle\right)}$$

Giovanni Angelini

$$(x, z, P_{hT}^2, Q^2)$$

Kinematics factors drops in the ratio. Information on the FF can be extracted from it.

Data Selection: Scattered Electron Cuts

FIDUCIAL CUTS:

JSA

GW

```
Giovanni Angelini
```


JSA

GW

Data Selection: Scattered Electron

Giovanni Angelini

Data vs MC Kinematics

GW

Giovanni Angelini

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

< 5 >

Reconstructed photons

Photon Energy > 400 MeV

π0 Reconstruction in Z bins

Data divided in z bin (size 0.1) 0.2 < z ≤ 0.9

π 0 s obtained from the gaussian integral

Giovanni Angelini

Multiplicity of Neutral Pions Electroproduction

Giovanni Angelini

DSS: FF obtained from global fits.

Giovanni Angelini

π0 Reconstruction in Pt bins

Efficiency w. Acceptance:

π 0s reconstructed from MC (within the cuts)

π 0s generated (4 π)

π0 Reconstruction in PT bins

JSA

GW

Giovanni Angelini

f1d Name: 2.263 а 0.313 χ²/ndf 0.757 2.272 χ² ndf 3.000 0.90 0.70 0.80

<10>

Beam Single Spin Asymmetry

Calculating nr of particle produced in SIDIS (multi dimensional bins) is a necessary step for multiplicity analysis.

MC, acceptances studies, fiducial cuts, etc. can be cross checked and used in both analysis Independent cross checking with UCONN analysis

Giovanni Angelini

HE GEORG

The multiplicity extracted as Z function follows global data.

The Pt distribution is in a good approximation gaussian with a sigma comparable with what expected by literature.

Next: 1)Production of 500M simulation for studying acceptances in multi-dimensional bins. 2) Multiplicity and BSA of Pi0

My Goal: Produce an Analysis note by the end of the year, PhD defense and publication in 2020

Giovanni Angelini

π0 Advantages

For p0 at large x, when sea contribution can be neglected the ratio $e'\pi^0 X/e'X$ should follow z-dependence of the fragmentation function (after integration over P_T)

 $\sigma_p^{eX} \propto 4u + d + \dots$ $\sigma_p^{\pi^0} \propto 4u D^{u \to \pi^0} + dD^{d \to \pi^0} + \dots$ $D^{u \to \pi^0} \approx D^{d \to \pi^0}$

1) suppression of higher-twist contributions at large hadron energy fraction (particularly important at JLab energies where small z events are contaminated by target fragmentation)

2) the absence of $\rho 0$ production which complicates the interpretation of the charged single-pion data

3) the fragmentation functions for u and d quarks to $\pi 0$ are the same in first approximation

4) suppression of spin-dependent fragmentation for $\pi 0$ s, due to the roughly equal magnitude and opposite sign of the Collins fragmentation functions for up and down

5) longitudinal photon contribution, is suppressed in exclusive neutral pions production with respect to the transverse photon contribution, which is higher twist, suggesting that longitudinal photon contribution to SIDIS $\pi 0$ will also be suppressed.

6) at large x, where the sea contribution is negligible, $\pi 0$ multiplicities and double spin asymmetries will provide direct info on the fragmentation function of u and d -quarks to $p\pi 0$.

7) $\pi 0$ data has better uniformity and smaller variations of averages of \mathbf{P}_{T} with x due to correlations between longitudinal and transverse momentum of quarks and hadrons

1st (Now up to May) :

-Generator: CLASDIS with no radiative processes.

- To be ready in about 1.5 months
 - Disk space: 1.4 Tb
 - Need another user to lunch simulation to have them completed in 1.5 months.

June to be spent to compare data and Montecarlo of 1st production.

2nd (Summer 2019):

- 500 M to 1000 M DIS eP process with radiative effects. CLASDIS + radiative processes (maybe)
- Produce them July-August.
- Disk Space: <4 Tb
- Need 1 or 2 users to submit jobs and have them completed in 2 months.

September for study in 2nd production.

If everything is ok, producing analysis note October-November.

500 M DIS eP processes in Spring 2018 configuration (10% of it already produced in DST format)

Beam Single Spin Asymmetry

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi} \sin\phi}{1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos(2\phi)} \cos(2\phi)}$$

Dominated by the sing term (often referred as : sing moment)

Giovanni Angelini

 $(P) \to e(l')h(P_h)X$ e(l)P

$$_{UU}^{\cos 2\phi}\cos 2\phi + \lambda_e A_{LU}^{\sin\phi}\sin\phi).$$

$$\frac{\overline{(+\epsilon)}F_{UU}^{\cos\phi}}{+\epsilon F_{UU,L}}, \quad A_{UU}^{\cos2\phi} = \frac{\epsilon F_{UU}^{\cos2\phi}}{F_{UU,T} + \epsilon F_{UU,L}}.$$

Measured in Hermes, Compass and CLAS6

Clas12 will have significant higher statistics and extended kinematic coverage.