The Spin Structure of the proton at low Q² from CLAS EG4

A. Deur

Jefferson Lab

03/08/2019

On behalf of the EG4-proton analysis team: X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, H. Kang

The EG4 experiment Group

Main goal: measurement of the generalized Gerasimov-Dreall-Hearn (GDH) sum for the proton and deuteron at low Q².

E03-006 (NH₃):

Spokespeople: **M. Ripani**, M. Battaglieri, A.D., R. de Vita Students: H. Kang (Seoul U.), K. Kovacs⁺ (UVa)

E06-017 (ND₃)

Spokespeople: **A.D.**, G. Dodge, M. Ripani, K. Slifer Students: K. Adhikari⁺ (ODU)

K.P. Adhikari *et al.* (CLAS Collaboration), "Measurement of the Q² dependence of the Deuteron Spin Structure Function g₁ and its Moments at Low Q² with CLAS" PRL 120, 062501 (2018)

EG4 ran from Feb. to May 2006.

Main goal: inclusive analyses. Also, exclusive analysis

X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

◆ Graduated.

The EG4 experiment Group

Main goal: measurement of the generalized Gerasimov-Dreall-Hearn (GDH) sum for the proton and deuteron at low Q².

E03-006 (NH₃):

Spokespeople: **M. Ripani**, M. Battaglieri, A.D., R. de Vita Students: H. Kang (Seoul U.), K. Kovacs⁺ (UVa)

E06-017 (ND₃)

Spokespeople: **A.D.**, G. Dodge, M. Ripani, K. Slifer Students: K. Adhikari⁺ (ODU)

K.P. Adhikari *et al.* (CLAS Collaboration), "Measurement of the Q² dependence of the Deuteron Spin Structure Function g₁ and its Moments at Low Q² with CLAS" PRL 120, 062501 (2018)

EG4 ran from Feb. to May 2006.

Main goal: inclusive analyses. Also, exclusive analysis

X. Zheng et al. (CLAS Collaboration), PRC 94, 045206 (2016)

◆ Graduated.

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

- •Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- •Measure the global property (e.g. spin polarizability sum rules)

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

- •Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- •Measure the global property (e.g. spin polarizability sum rules)

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

- •Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- •Measure the global property (e.g. spin polarizability sum rules)

<u>Generalized GDH sum rule</u>: valid for any Q². Recover the original GDH sum rule as $Q^2 \rightarrow 0$

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

- •Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- •Measure the global property (e.g. spin polarizability sum rules)

<u>Generalized GDH sum rule</u>: valid for any Q². Recover the original GDH sum rule as $Q^2 \rightarrow 0$

Spin polarizabilities sum rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

•Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.

•Measure the global property (e.g. spin polarizability sum rules)

Spin polarizability sum rules involve higher moments:

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

 $g_2(v,Q^2)$: second spin structure function (mostly a perp. target pol. observable)

Longitudinal-Transverse polarizability:

$$\delta_{LT} = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx$$

Spin polarizabilities sum rules

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

•Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.

•Measure the global property (e.g. spin polarizability sum rules)

Spin polarizability sum rules involve higher moments:

Generalized forward spin polarizability:

$$\gamma_0 = \frac{4e^2M^2}{\pi Q^6} \int x^2 (g_1 - \frac{4M^2}{Q^2} x^2 g_2) dx$$

 $g_2(v,Q^2)$ suppressed in γ_0

Longitudinal-Transverse polarizability:

$$\delta_{LT} = \frac{4e^2 M^2}{\pi Q^6} \int x^2 (g_1 + g_2) dx$$

Before EG4 run (2006):

Precise mapping of spin structure function moments in intermediate Q² region for p, n and d.

PQCD, models and data agree. Not so clear for χpT .

State of χpT affairs before EG4 run (2006):

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	Γ_1^{p+n}	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ_{LT}^n	d_2^p	d_2^n
Bernard et al. [14]	X	X	Α	X	X	A	X	X	X	_	X
Ji <i>et al</i> . [15]	X	X	A	X	-	-	-	-	-	-	-
Kao <i>et al</i> . [16]	-	-	-	-	X	Α	X	X	X	-	X

A: agree with dataX: disagree with data

-: no calculation available

State of xpT affairs before EG4 run (2006):

~no unmeasured low-x

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	Γ_1^{p+n}	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ_{LT}^n	d_2^p	d_2^n
Bernard et al. [14]	X	X	A	X	X	Α	X	X	X	-	X
Ji et al. [15]	X	X	A	X	-	-	-	-	-	-	-
Kao <i>et al</i> . [16]	-	-	-	-	X	Α	X	X	X	-	X

A: agree with dataX: disagree with data

-: no calculation available

State of xpT affairs before EG4 run (2006):

State of xpT affairs before EG4 run (2006):

State of xpT affairs before EG4 run (2006):

- Mixed success of χpT;
- Surprising discrepancies (δ_{LT} crisis);
- Validity range smaller than hoped for: $Q^2 < \sim 0.1 \text{ GeV}^2 \Rightarrow \text{Ambiguous } \chi pT$ tests.

 \Rightarrow Need new data on p and n (d, ³He) at very low Q² (i.e. for integrals over v: low angles).

Purpose of EG4.

Two different target lengths to verify external radiative corrections (big elastic tails at low Q+high v). So far, only long target data have been analyzed.

(Deuteron data: only on long target.)

EG4 kinematic coverage

g1^p from EG4 polarized cross-section difference

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,...

+ EG4 data

- "Model" (Fit to EG1b (+ other published data)+extrap. Used as intermediary step to extract g₁^p.)

- Example of "Model" variation: assess uncertainties on extraction method, radiative corrections,

g₁^p from EG4 polarized cross-section difference

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,...

g₁^p from EG4 polarized cross-section difference

X. Zheng, J. Zhang, S. Kuhn, M. Ripani, M. Osipenko, A. D.,...

Exploring the Nature of Matter

oring the Nature of Matte

A. Deur, CLAS col. meeting. 03/08/2019

Another generalization of GDH sum: $I_{TT} = \int_{V} \frac{K_f}{v} \frac{\sigma_A(v,Q^2) - \sigma_P(v,Q^2)}{v} dv$

 ∞

•χPT results of Lensky et al. agree with data up to Q²~0.035 GeV².
•Bernard et al. χPT calculation agrees with data up to Q²~0.02 GeV².
•Data compatible with GDH sum rule.

Jetterson Lab Thomas Jefferson National Accelerator Facility Exploring the Nature of Matter

What left to do for EG4:

- Finalize systematic analysis (soon);
- Include short target data into analysis (soon);
- Finalize analysis note, and write paper.

Conclusion

General agreement with χ PT, but its Q²-range of validity is limited (up to Q²~0.04 GeV²)

Compare with deuteron case

General agreement with χ PT, but its Q²-range of validity is limited (up to Q²~0.04 GeV²) For the EG4 results from deuteron: Lensky et al. agrees (typically up to Q²~0.1 GeV²)

A satisfactory theoretical description of spin observables at low Q² remains challenging

State of xpT affairs before EG4 run (2006):

- Mixed success of χpT;
- Surprising discrepancies (δ_{LT} crisis);
- Validity range smaller than hoped for: $Q^2 < \sim 0.1 \text{ GeV}^2 \Rightarrow \text{Ambiguous } \chi pT$ tests.

 \Rightarrow Need new data on p and n (d, ³He) at very low Q² (i.e. for integrals over v: low angles).

Purpose of EG4.

Up to date state of χpT affairs (2019)

Agreement between data and χpT up to $Q^2 = 0.1$ GeV²:

~no low-x

Ref.	Γ_1^p	Γ_1^n	Γ_1^{p-n}	$\mid \Gamma_1^{p+n}$	γ_0^p	γ_0^n	γ_0^{p-n}	γ_0^{p+n}	δ^n_{LT}	d_2^n			
Ji et al. 1999	X	X	Α	X	-	-	-	-	-	_			
Bernard et al. 2002	X	X	Α	X	X	Α	X	X	X	X			
Kao et al. 2002	-	-	-	-	X	Α	X	X	X	X			
Bernard et al. 2012	X	X	A	X	X	Α	X	X	X	-			
Lensky et al. 2014	X	Α	Α	Α	X	X	X	X	X	Α			
A: agree with data X: disagree with data -: no calculation available						$\Delta \text{ suppressed } \Delta \text{ suppressed } \text{Δ suppressed $``\delta_{LT}$ crisis''}$							

Table would have more A if we lower the Q² range for comparison.

- •EG4: Low Q² measurement using polarized e- on polarized p and d, over a large x-range in order to study spin sum rules.
- •New detector necessary to reach these kinematics.
- •Main goal: unambiguous test of χ PT.
- •Doubly polarized inclusive cross-section analysis.

- •EG4: Low Q² measurement using polarized e- on polarized p and d, over a large x-range in order to study spin sum rules.
- •New detector necessary to reach these kinematics.
- •Main goal: unambiguous test of χ PT.
- •Doubly polarized inclusive cross-section analysis.
- •Exclusive data on π^+ and π^- spin-dep. electroprod. on p published in 2016 (asym. analysis).
- •Inclusive analysis on d published in 2018. K.P. Adhikari *et al.* (CLAS Collaboration), PRC 94, 045206 (2016)
- •Proton data analysis and analysis note will be finalized soon.

- •EG4: Low Q² measurement using polarized e- on polarized p and d, over a large x-range in order to study spin sum rules.
- •New detector necessary to reach these kinematics.
- •Main goal: unambiguous test of χ PT.
- •Doubly polarized inclusive cross-section analysis.
- •Exclusive data on π^+ and π^- spin-dep. electroprod. on p published in 2016 (asym. analysis).
- •Inclusive analysis on d published in 2018. K.P. Adhikari *et al.* (CLAS Collaboration), PRC 94, 045206 (2016)
- •Proton data analysis and analysis note will be finalized soon.
- •Data on Γ_1 , I_{TT} , and γ_0 showed that χPT has mixed success, depending on the χPT method and observable.
- •Original GDH sum rule ($Q^2=0$) seems fine for p and n.

- •EG4: Low Q² measurement using polarized e- on polarized p and d, over a large x-range in order to study spin sum rules.
- •New detector necessary to reach these kinematics.
- •Main goal: unambiguous test of χ PT.
- •Doubly polarized inclusive cross-section analysis.
- •Exclusive data on π^+ and π^- spin-dep. electroprod. on p published in 2016 (asym. analysis).
- •Inclusive analysis on d published in 2018. K.P. Adhikari *et al.* (CLAS Collaboration), PRC 94, 045206 (2016) K.P. Adhikari *et al.* (CLAS Collaboration). PRL 120, 062501 (2018)
- •Proton data analysis and analysis note will be finalized soon.
- •Data on Γ_1 , I_{TT} , and γ_0 showed that χPT has mixed success, depending on the χPT method and observable.
- •Original GDH sum rule ($Q^2=0$) seems fine for p and n.
- •EG4: part of JLab program to measure benchmark spin observables for $\chi PT \Rightarrow$ More low Q² data to come:
 - • g_1 , g_2 , Γ_1 , Γ_2 , I_{TT} , γ_0 and δ_{LT} for the neutron and ³He (Hall A E97110). Coming soon. • g_2 , g_1 , Γ_2 , Γ_1 , I_{TT} , δ_{LT} and γ_0 for the proton (Hall A E08027). Coming soon.

Extra slides

Differences between EG1b and EG4

•Radiative corrections.

Large radiative tails for EG4 kinematics \Rightarrow revisited standard RCSLACPOL code and improved its handling of elastic tails (external elastic radiative tail seems to have been missing).

• Different detector for main trigger and electron ID (new INFN Cherenkov counter for EG4). Much higher efficiency for outbending electrons, but still some systematic uncertainty for point-to-point electron detection efficiency and acceptance.

- Absolute cross-sections differences used to extract g₁^p, not relative asymmetries. Absolute normalization needed. But no target dilution (usually, a large correction). No F₁^p input needed.
- Different kinematics (beam energy, angles) to obtain x and Q² common to EG4 and EG1b. Implies in particular different g₂^p inputs.

Some of these differences may be the origin of the tension between the EG4 and EG1b results.

The issue is still being investigated.

Agreement with Hall A preliminary result is reassuring (but non-binding).

Sum rule: relation between an integral of a dynamical quantity (cross section, structure function,...) and a global property of the target (mass, spin,...).

Can be used to:

ing the Nature of Matte

- •Test theory (e.g. QCD) and hypotheses with which they are derived. Ex: GDH, Ellis-Jaffe, Bjorken sum rules.
- •Measure the global property (e.g. spin polarizability sum rules)

Generalized GDH sum rule: valid for any Q². Recover the original GDH sum rule as $Q^2 \rightarrow 0$

Xth $g_{,(v,O^2): \text{ first spin structure function (mostly a longit.}}$ **xpt**: low energy effective theory of QCD obtained using a Lagrangian consistentwith QCD's chiral symmetry (neglecting quark masses).Captures the main essence of QCD at low Q², without the complicated details.Systematic perturbative expansion valid for e.g. Q<<m_ π .

