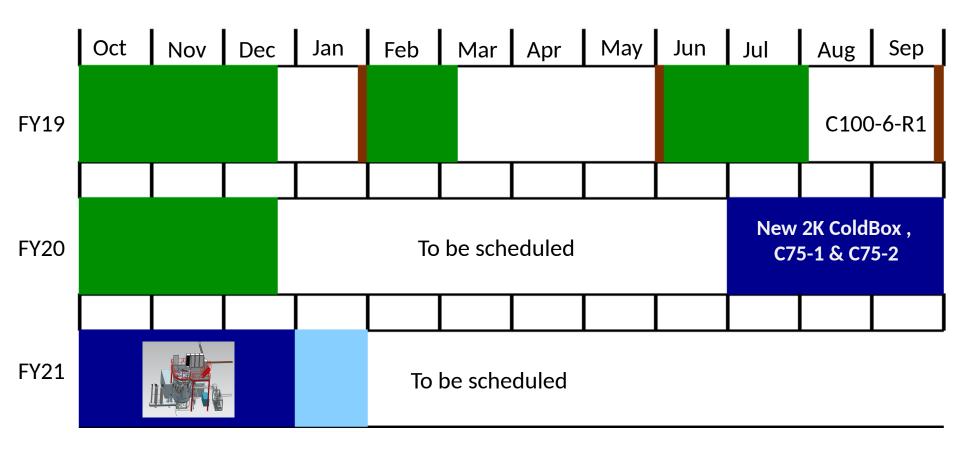
March 2019 Accelerator Status

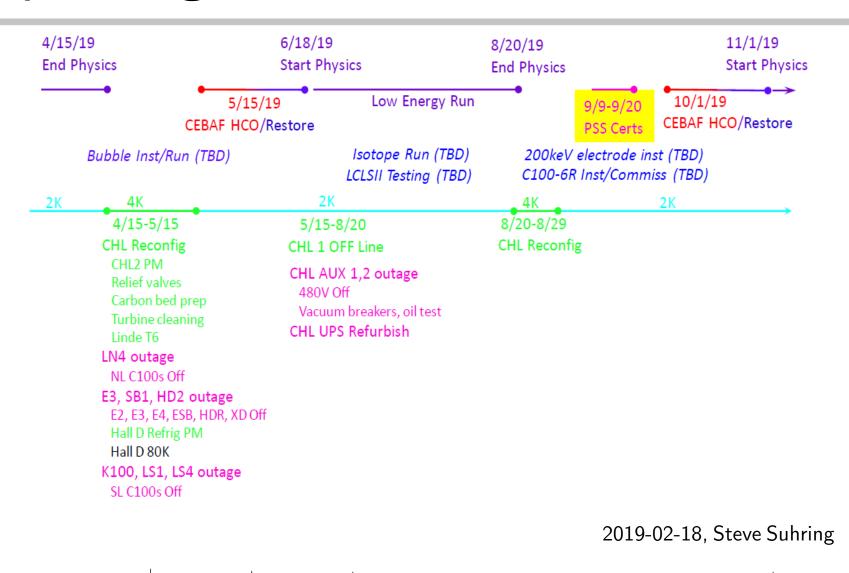
Michael Tiefenback

Hall B Accelerator Physics Liaison

Past, Present, and Yet To Come


The Beat Goes On

- Site Utilities (power, LCW, ...)
- Upcoming expt. schedule (you probably already know)
- Work for others (LCLS II, SBIR, etc)
- Accelerator details (something old, something new, ...)
 - Organizational reminder (Hall liaisons, etc)
 - Magnets
 - Beam performance
 - SRF (gradient and margin, etc)
 - CEBAF Performance Plan
- Summary



Replay: FY19, FY20 & FY21 Plans (as of Sept. 2018)

• FY19/FY20 Schedule adjustment under consideration to recover lost weeks from Aug/Sep 2018 startup and improve alignment with C100-6-R1 delivery

Upcoming Scheduled Accelerator Down

April

May

June

Oct

Sept

July

Aug

Summer 2019: 9 weeks of low linac gradient Physics

- Hall A: E12-11-101
 - 1-pass, 70 microAmpere
 - Parity Violation Asymmetry measurement on a Pb target.
 - Expect significant injector optimization to maintain parity quality beam.
- Hall B: HPS
 - 5-pass beam
- Hall C: Various experiments
 - 3/4/5 pass beam, up to 90 microAmpere
 - High beam current simultaneously with Parity Quality Beam will stress the injector setup and RF due to beam loading.
 - 3 pass changes in the eight days of the run
- No Hall D operations
 - B&C may receive 499 MHz beam on 5-pass if useful.

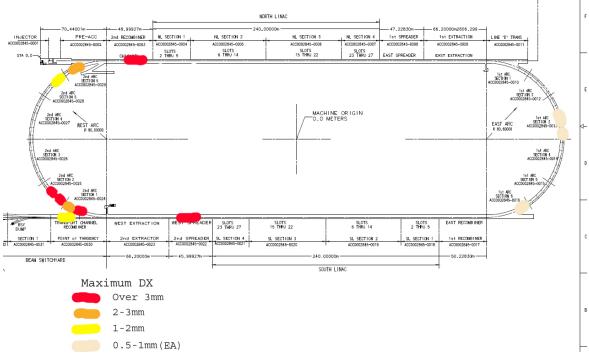
(A. Freyberger; JLAAC 10/11/18) [repeat: seems not to have changed as of 2019-03-05 – M.Tiefenback]

LCLS II, SBIRs, etc: do they help me?

- LCLS II production and testing
 - Q measurement approach should provide LHe mass flow monitoring; helps cryogenic management
- SBIR development (high-power harp)
 - Apply developments to modernize CEBAF harps
- Alternate phosphors and transition radiators
 - Improved diagnostic precision using CEBAF viewers

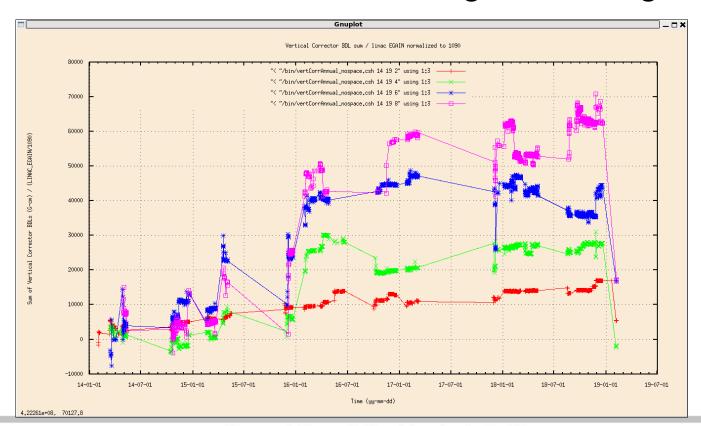
Contacts: In Case You Need Us

Region/System Liaison	Operations	Beam Physics	
LERF	Shawn Frierson	Chris Tennant	
Injector	Daniel Moser	Alicia Hofler	
Hall A	Eric Forman	Yves Roblin	
Hall B	Brandi Cade	Michael Tiefenback	
Hall C	Lester Richardson	Jay Benesch	
Hall D	Michael McCaughan	Todd Satogata	

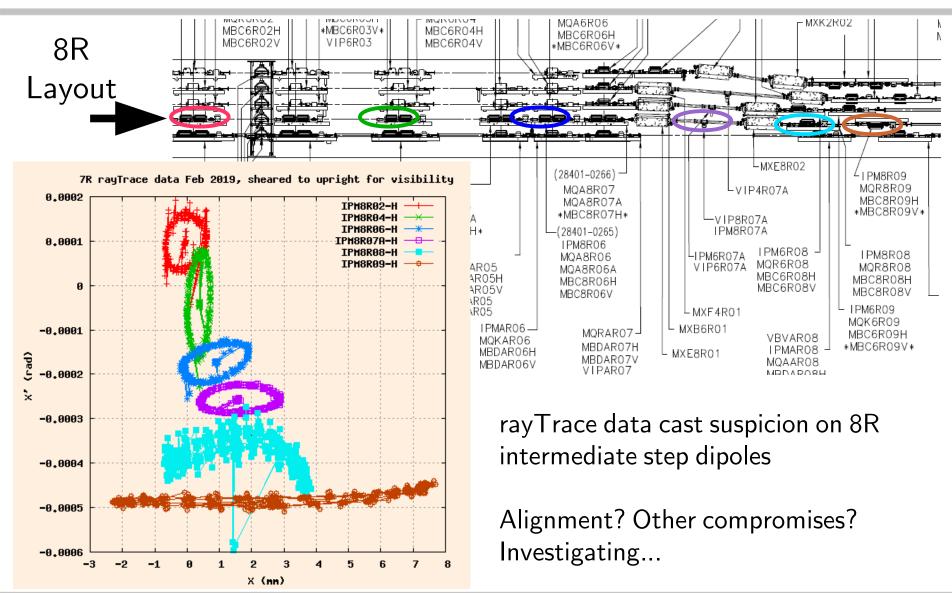

System	Performance Integrator	
Gradient	Ken Baggett	
Magnets	Michael Tiefenback	
High-Power Dumps	Anthony Dipette	
Beam Diagnostics	Joe Gubeli	

Magnet-specific Bits

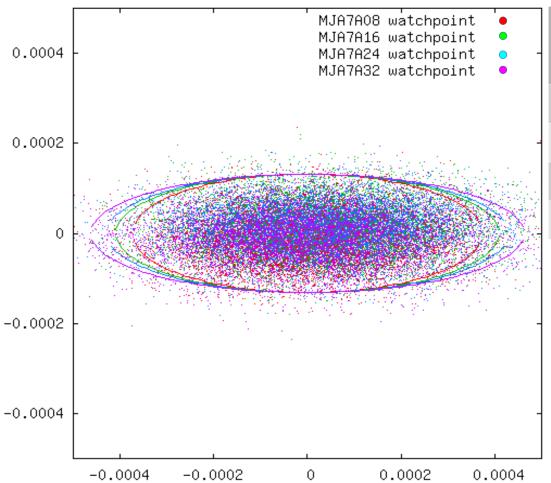
- Misaligned quadrupoles identified in 2R and 6R (2018)
- During survey and correction:
 - Dipole stand ceiling mounts found loosened
 - Thermal cycling suspected as cause


- Worst offenders (dipoles) corrected short-term
- Long-term sticky" corrections being studied
- Quadrupole supportsgenerally not involved

Vertical Corrector Sum: West Arcs


- elog 3648713 showing West Arc corrector sums 2014-2019
- Stands tilt to beam left; rolled dipoles kick downward
- May be involved in recent excessive emittance growth
- Vertical correctors relax to 2014 strength after realignment

Localizing Magnetic Non-linearities?


Diagnostic Updates

- Installing Synchrotron Light Monitor in 7A "soon"
 - Most hardware for first item in hand
- Alternate viewer material concurrently installed
 - Quantitative comparison of SLM vs. viewer
- SBIR high beam power harp sited in Hall C line
 - Tests multiple hardware improvements

Computed Profiles: Final Dipoles of 7A SuperPeriods

Location	σ _× (μm)	σ _γ (μm)
MJA7A08	148.	54.
MJA7A16	163.	54.
MJA7A24	170.	54.
MJA7A32	184.	54.

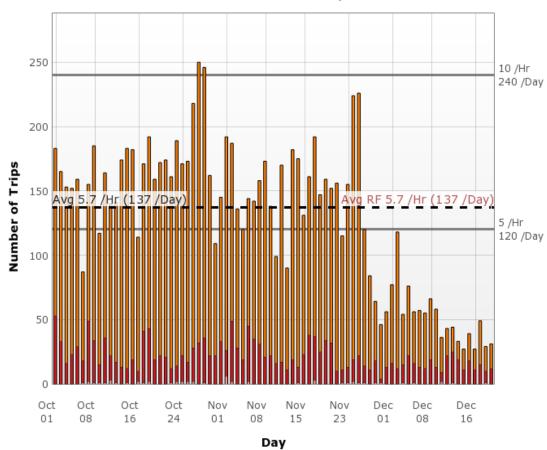
Ellipses in figure are drawn at 2.5 "sigma" as a guide for the eye

Why SLM-based matching?

- Existing optical processing demonstrated by B. Freeman in bunch length measurements provides beam size info
- Identical hardware bench tested prior to installation
 - verifies calibration
 - ensures systematics are truly systematic
- Arc 7A installation is a representative high arc test
 - -70% emittance growth, $\sigma_{\rm x} \sim 150-200$ microns
 - Tests qsUtility solutions and 4-SLM protocol solution
 - Tests procedural convergence and time-to-rematch
 - Provides continuous intermediate arc beam profiles
 - Design is easily adapted to other arcs if justified by setup efficiency gains
 - Instant comparison of multiple laser-sourced beams

Low Linac Gradient Margin

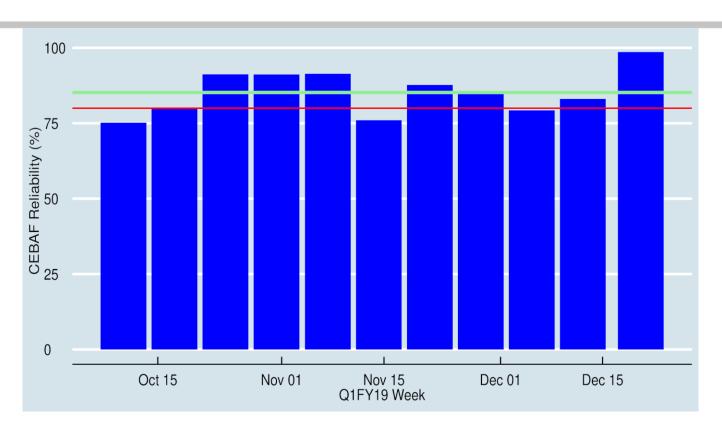
- Attempts to improve linac gradient margin in 2018
 - Install P1'cryomodule (7-cell cavities) in 1L07
 - Exchange warm windows in 1L20 for ceramic
- Problems with each resulted in decreased margin
- First mitigation: asymmetric linac operation 1040/1060
- Chronic low NL margin results in poor beam delivery
 - Excessive trip rate, especially for NL
- Today linac energies will be reduced to 1000/1020 (expected values; under discussion)
- Help is on the horizon, but not yet installed



Q1FY19 CEBAF Performance

- Oct/Nov operations at 1050 MeV/linac: trippy but productive
- Dec ops at 930 and 805 MeV/linac demonstrated wisdom of extra headroom
 - Trip rate dropped as expected
 - Able to bypass cavities and even complete cryomodules mostly eliminated RF recovery days

FSD Trip Summary



Q1FY19 CEBAF Performance

- First quarter of 12 GeV era with >80% reliability
- 805 MeV/linac in last eight days of run had reliability >98%
 - Necessity of CEBAF energy reach and RF gradient plan

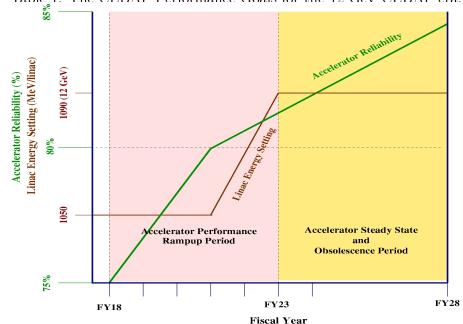
CEBAF Performance Plan

- Goal: Operate CEBAF at design energy with adequate margin
 - 1090 MeV/linac with 100 MeV of margin in each linac
 - 100 MeV margin permits entire C100 bypass if necessary
- Emergent problem cavities can be bypassed
 - collect and address during RF recovery days
 - with marginally higher but tolerable trip rates

Issues:

- Current energy reach 1050 MeV/linac vs 1090 MeV/linac design
- Energy reach degrades at 34-48 MeV/pass/year
 - JLAB-TN-022 and preliminary analysis of 2016-18 operations
- Strategy: add gradient, slow or stop degredation
 - CEBAF Performance Plan

[slide credit: Todd Satogata]

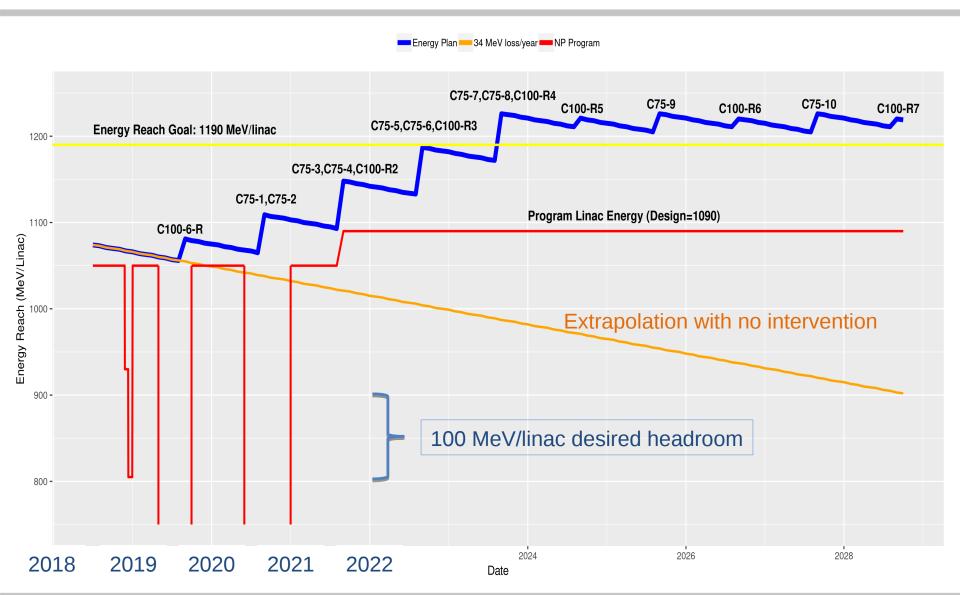


CEBAF Performance Plan

- Long-term strategy
 - Identify and purchase critical spares
 - Replenish consumed spares (e.g. klystrons)
 - Increase energy reach
 - C75: refurbish 8 original
 C20 modules
 - C100: refurbish modules
 - Particulates: Clean warm girders, upgrade vacuum systems
 - Mitigate obsolescence
- Target: 34 weeks/year ops at >80% reliability

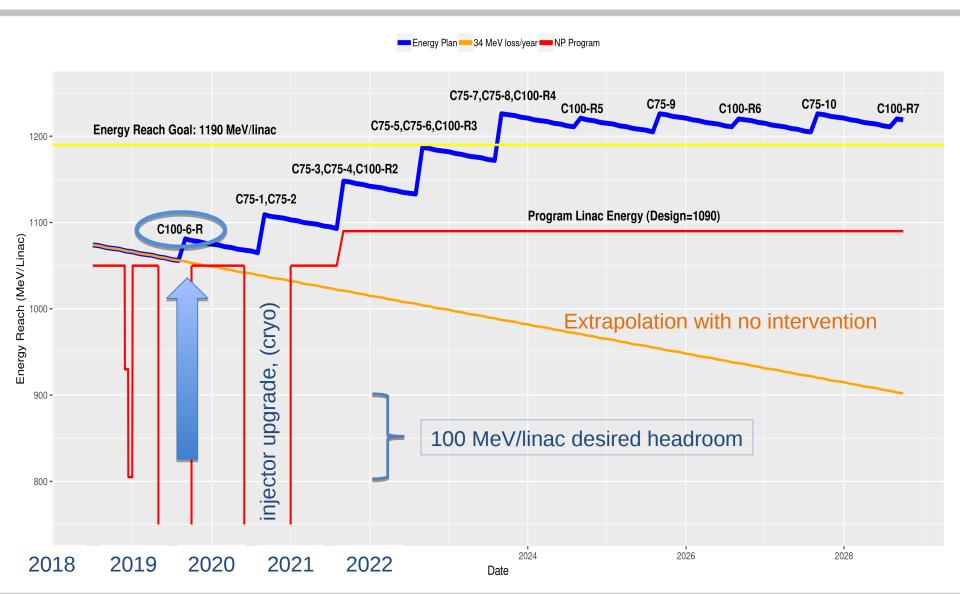
Category	Unit/Metric	Goal
Reliability	%	> 80
Optimal Weeks	weeks-per-year	34
Beam Tuning Hours	h/week	< 8
Peak Hall Multiplicity	Number of halls	4
12 GeV Program Expected Duration	years	20
Linac Design Energy	MeV	1090
Required Linac Energy Margin at start of FY	MeV	> 110
Overall FSD Trip rate	trips/hour	< 15
Overall FSD Trip Downtime	min/hour	< 5
RF Trip rate	trips/hour	< 10
Beam Loss Trip rate	trips/hour	< 5

Table 1: The CEBAF Performance Goals for the 12 GeV CEBAF era.



Arne Freyberger/Randy Michaud

Energy Reach Chart



Credit: Todd Satogata

Energy Reach Chart

Credit: Todd Satogata

C100-06R Refurbishment Status

C100-06R Status

- The cryomodule was removed from the linac as part of the 2018 summer down and set aside to "cool down"
- Disassembly of the cryomodule completed Nov 2018
 - No signs of radiation damage in components from field emission
- Cavities reprocessed and tested Dec 2018-Feb 2019
 - Field emission free cavities beyond the operational limit after ultra pure high pressure rinsing!
- Cavities met all operational and assembly requirements

C100-06R Plans

- Assembling cavity string in February 2019 (next week)
- Complete cryomodule assembly by end of July 2019
- Complete cryomodule acceptance test by Labor Day
- Install and commission in September 2019

C100-06R VTA Summary – Final

	2011	2011 Field Emission	2019	2019 Field Emission	
Cavity Number	Q0@20 MV/m	Onset (MV/m)	Q0@20 MV/m	Onset (MV/m)	Comment
Cavity Nulliber	Qu@Zu Ivi v/ III	(1414/111)	Qu@Zu Ivi v/III	(1414/111)	
					Pass, FE free
27	Not tested	Not tested	1.00E+10	NA	Admin limited at 24
39	8.00E+09	15.6	1.00E+10	NA	Pass, FE Free
51	6.60E+09	11	1.00E+10	21	Pass FE onset at 21 MV/m
53	1.26E+10	13.5	1.00E+10	NA	Pass, FE Free
56	1.28E+10	25	1.00E+10	NA	Pass, FE Free
43	8.00E+09	13	1.30E+10	21.5	Pass, FE onset at 21.5 MV/m
					Pass, FE Free
47	6.70E+09	12	1.00E+10	NA	Admin limted at 24 MV/m
					Pass, FE Free Admin limited at
55	7.34E+09	15.5	1.10E+10	NA	24 MV/m

Summary

- Recent operation highlights need for gradient margin
- CEBAF Performance Plan execution is ongoing
- On-site upgrades and maintenance are ongoing
- Contamination control is essential with SRF
 - In-situ recovery may be possible without full overhaul
- We'll do our best to satisfy experimental requirements

