

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Overview and Introduction

- Physics motivation
- Analysis procedure
- First look on systematic effects
- Multidimensional binning
- Comparison to CLAS and HERMES
- ➔ Data recorded with CLAS12 during spring of 2018
- ➔ Analysed data < 2 % of approved RG-A beamtime
- ➔ 10.6 GeV electron beam
- ➔ 85 % average longit. polarization
- ➔ liquid hydrogen target

Physics Motivation

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is the semi inclusive deep inelastic scattering

Physics Motivation

In a simplified way, it can be expressed as:

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$

where the moments $A_{UU}^{\cos\phi}$, $A_{UU}^{\cos 2\phi}$, $A_{LU}^{\sin\phi}$ are directly related to the structure functions of the cross section

Focus of this study: $A_{LU}^{\sin\phi}$

- \rightarrow Only moment which depends on the beam helicity
- → Helicity dependence arises from the asymmetric part of the leptonic tensor and its coupling to the hadronic tensor
- \rightarrow Directly correlated with the structure function $\,F_{LU}^{\sin\phi}$
- ➔ Provides information about the quark gluon correlations in the proton

Physics Motivation and Extraction

• BSA is a good tool to extract $A_{LU}^{\sin\phi}$

$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos(2\phi)}\cos(2\phi)}$$

→ Helicity independent acceptance terms cancel out in the ratio!

Past: Measurements have been performed with CLAS, HERMES and COMPASS

Advantages of CLAS12:

- ➔ Significantly higher statistics
- \rightarrow Extended kinematic coverage (Q², P_T)

Particle ID

- **Electron ID** \rightarrow Based on the electromagnetic calorimeter and the cherenkov counters
- **Hadron ID** \rightarrow Charge corresponding to the selected hadron
 - \rightarrow Fiducial cuts on the hit position in the drift chambers
 - → Particle selection based on β vs p correlation (Maximum likelihood particle ID)

Event selection and kinematic cuts

<u>π⁰ selection</u>:

 $E_v > 0.6 \text{ GeV}$, all 2 γ pairs

SIDIS simulations show:

background dominated by SIDIS $\pi^{\rm 0}$

 $\rightarrow~3~\sigma$ cut around the peak positions

Kinematic cuts for all pions:

minimal electron energy: 2.0 GeV minimal pion energy: 1.5 GeV

<u>DIS cut</u>: $Q^2 > 1 \text{ GeV}^2$ W > 2 GeV

Additionally: Cut on the final state hadron momentum fraction z

0.3 < z < 0.7

 \rightarrow z > 0.3 removes the "target fragmentation region"

 \rightarrow z < 0.7 removes contamination by pions from exclusive channels

Kinematic coverage for π^+ (similar for π^- and π^0)

Integrated beam spin asymmetry

→ Clear sinoid shape can be observed, according to

 $\sin \varphi$

π^0 - first look on systematic effects

First studies on a multidimensional binning with CLAS 12

- Statistics of the full spring run (10% of RGA) will be sufficient for a multidimensional binning
- Up to now: 10 % of the spring run already work well, but cause incresed error bars for high Q² and / or P_T bins
- Study has been done for all combinations of bins, but following slides will focus on Q² and P_T dependence for different sencondary bins

π^+ kinematic coverage (similar for π^- , π^0)

π^+ - Q² dependence of $A_{III}^{\sin(\varphi)}$

π^+ - Q² dependence of $A_{III}^{\sin(\varphi)}$

π^+ - P_T dependence of $A_{III}^{\sin(\varphi)}$

Stefan Diehl, U Giessen + UConn

CLAS collaboration meeting, JLAB

03/07/2019

π^0 - Q² dependence of $A_{III}^{\sin(\varphi)}$

Stefan Diehl, U Giessen + UConn

CLAS collaboration meeting, JLAB

03/07/2019

 π^0 - Q² dependence of $A_{LU}^{\sin(\varphi)}$

Comparison of $F_{LU}^{sin(\Phi)}$ for $\pi^+ \pi^-$ and π^0 and with other experiments

➔ inbending configuration

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} \begin{cases} \sim \lambda_e A_{LU}^{\sin\phi} \sin\phi \\ \sim \lambda_e \sqrt{2\,\varepsilon(1-\varepsilon)} \,\sin\phi_h \,F_{LU}^{\sin\phi_h} \end{cases}$$
$$\varepsilon = \frac{1-y-\frac{1}{4}\gamma^2 y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2 y^2} \qquad y = \frac{P\cdot q}{P\cdot l} \quad \gamma = \frac{2Mx}{Q}$$
$$q = l-l'$$

Comparison of differently charged pions

Comparison of π^+ results for CLAS12, CLAS and HERMES

Comparison of π^- results for CLAS12, CLAS and HERMES

Stefan Diehl, U Giessen + UConn

Comparison of π^0 results for CLAS12, CLAS and HERMES

Stefan Diehl, U Giessen + UConn

Estimate of the number of events for SIDIS MC

- → For the full spring run a MC sample of 400M SIDIS events is required
- ➔ Based on the available data, an estimate of the number of events in each bin (for a 1D and 2D binning) has been performed
- → Can be used as input for a weighted MC generator (available from Harut)

Conclusion and Outlook

- CLAS12 enables the extraction of SIDIS pion BSA moments with high accuracy in an extended kinematic range
- Good agreement with previous experiments
- The presented analysis is based on only close to 2 % of the approved RG-A beamtime
- Next steps:
 - Repeat the studies with the full spring run data
 - Generate high statistics MC to study acceptance effects etc.
 - The behaviour at large Q^2 and p_T values will be studied in more detail
 - · Systematic effects will be investigated

