

Event Builder Status

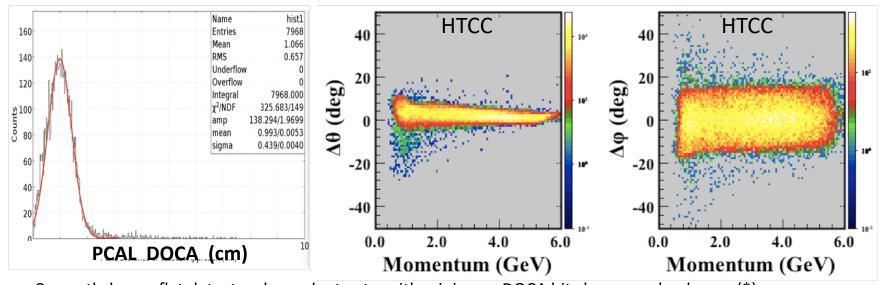
N. Baltzell
CLAS Collaboration Meeting
March 6, 2019

Overview

- "Event Builder" is the last CLAS12 service run, after all detectors
- Geometrically associates detector responses into particles
- Defines event start time, and does a basic particle identification
- Retrieves/analyzes various event-based quantities, e.g. helicity state
- Writes all info for physics analysis into DSTs (REC* banks)
- Documentation: https://clasweb.jlab.org/wiki/index.php/CLAS12 EventBuilder

EBAnalyzer.java	switch default, unassigned pid quality to 99	5 days ago
EBEngine.java	Merge pull request #255 from JeffersonLab/vg-optimize	4 days ago
EBHBEngine.java	Merge pull request #255 from JeffersonLab/vg-optimize	4 days ago
EBMatching.java	cherenkov matching fixes	8 days ago
EBTBEngine.java	Merge pull request #255 from JeffersonLab/vg-optimize	4 days ago
EBio.java	disable scaler readout	5 days ago
EventBuilder.java	particle-htcc combos for looser matching requirements	5 days ago

EBCCDBConstants.java	Merge branch 'development' into ebdev-mrg	4 months ago
	Merge branch 'development' into ebdev-mrg	4 months ago
EBConstants.java	EBConstants: cleanup	3 months ago
	eb cleanup: move rf to rec instead of service	3 months ago
	eb: cleanup unused imports	8 days ago
	eb: cleanup unused imports	8 days ago
SamplingFractions.java	eb: move sampling fractions to dedicated class, add pid- and sector-d	5 months ago


Creating Particles

Charged Particles

associate detector responses with tracks, geometrically, based on DOCA

Neutral Particles

• identify remaining trackless ECAL/CND hits as neutrals, assume straight trajectory, and associate with other detectors' unmatched, geometrically, based on DOCA

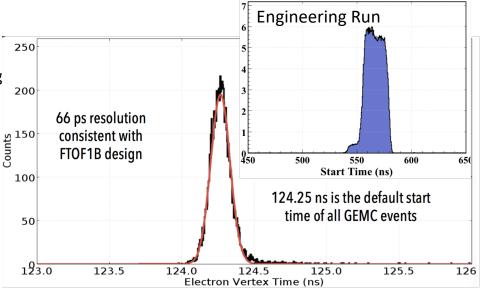
Currently loose, flat detector-dependent cuts, with minimum-DOCA hit chosen and only one (*) response allowed per detector layer per particle.

Timing information is currently ignored at this stage.

^{*} Being expanded ...

Event Start Time

Choose "Trigger Particle"

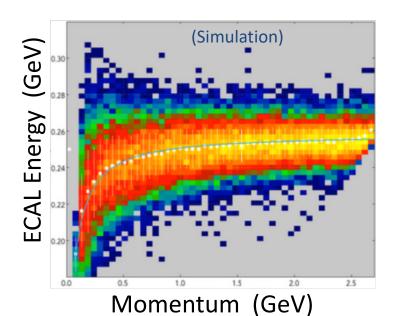

- highest energy e- else e+, if one exists
- else highest momentum track with an FTOF hit, assumed a π
- Forward Tagger
 - *** in progress ***
 - Uses a <u>"shadow" bank</u>, i.e. not adulterating existing data, just appending, when appropriate (i.e. no electron in FD), with new RECFT::Particle based on start time from FT, based on algorithm from FT analyzers

Construct its vertex time

based on path length, mass, momentum

Use nearest RF bunch to assign start time

- Correction for non-zero z-vertex is still disabled
 - especially important for CTOF
 - ideally requires DC-CVT to be aligned w.r.t. each other, else using one's z-vertex degrades the other's TOF timing resolution



Lepton and Neutral Identification

e-e+ in Forward Detectors

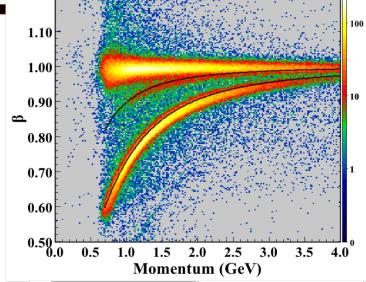
- Charged Track ECAL, HTCC, and FTOF hits
 - PCAL > 60 MeV
 - HTCC #phe > 2
- ECAL sampling fraction
 - ±5σ sampling fraction parameterized in momentum
 - REC::Particle.chi2pid is N_{σ} from nominal, so tightening the critera can be done with simple cut on chi2pid
 - Sampling fraction in CCDB needs to be updated based on final calibration

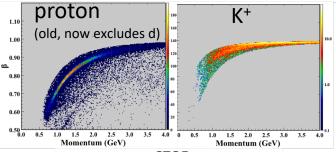
Neutrals

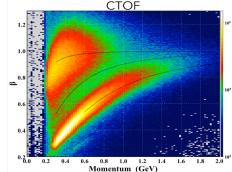
- Forward Detector
 - ECAL clusters unassociated with a track
 - seeds with PCAL first and matches to EC Inner/Outer
 - then seeds with EC Inner, and finally EC Outer
 - Also associates them with unmatched FTOF (currently unused)
 - , χ
- ECAL β>0.9
- Energy calculated from ECAL and sampling fraction parameterized in momentum
- Sampling fraction in CCDB needs to be updated based on final calibration
- neutron
 - β<0.</p>
 - Energy calculated from β assuming neutron mass
- Central Detector
 - CND clusters unassociated with a track assigned as neutrals
 - Also associates them with unmatched CTOF (currently unused)
 - neutron
 - β<0.9</p>
 - Energy calculated from β assuming neutron mass

Forward Tagger

- е
- Matched calorimeter and hodoscope clusters
- No charge separation, assumed negative
- γ
- Calorimeter cluster unmatched to hodoscope
- Energies based on calorimeter


Charged Hadron Identification


If a track fails e^-/e^+ identification, assume it's a charged hadron and assign its identity based on minimizing the time difference between event start time t_0 and vertex time.


$$\Delta t_i = t_0 - \left[t_{FTOF} - \frac{L}{\beta_i(p)} \right], \quad i = \pi/K/p/d/...$$

- If no TOF info, pid=0
- Vetoes from Cerenkov
 - #photoelectrons greater than 2 and below kaon threshold
 → reassign to π
- REC::Particle.chi2pid is a signed N_{σ} from nominal timing, based on σ per FTOF-paddle, so tightening the requirements can be done with a simple cut on chi2pid
- Can be extended to more sophisticated scheme, e.g. multi-dimensional likelihood, ML ...
- Will need updating from RICH, and now BAND

Plots are 10.6 GeV @ 5nA, require e^- for start time, and black curves are $\Delta B/\Delta t=0$

DSTs

High level HIPO banks for physics analyses

- Names are prefixed by "REC", in EVENT.json
 - https://github.com/JeffersonLab/clas12-offline-software/blob/master/etc/bankdefs/hipo/EVENT.json
- REC::* is based on time-based tracking, RECHB::* on hit-based
- We keep only REC banks in standard physics analysis workflow, and drop all lower level info
 - Also keep RUN::* and RAW::scaler banks

The main examples:

- REC::Event
 - run/event #, event time, trigger bits, helicity, etc
- REC::Particle
 - pid, charge, momentum, etc
- REC:: "ResponseType"
 - e.g. Calorimeter, Scintillator, Cherenkov, Track
 - hit/cluster energies, positions, times, shapes
 - contains pindex link to its particle
 - Note, this only contains responses associated with particles
 - with pointer to REC::Particle and corresponding clusters/hits in lower-level detector banks

Documentation:

https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs

Note, there appears to still be some misconception on the required cpu overhead of reverse indexing during analysis, which should be independent of the analysis details and a once-per-event operation.

Validation Tests

To check software progress, MC-based

- clas12-offline-software/validation
- test gemc files automatically downloaded from webserver
 - kept in sync with latest gemc version
- decoded, reconstructed, analyzed to perform
 - data sanity checks
 - yields, efficiency / misidentification
- A few are included in automatic Travis build tests.
 - this has proven extremely useful, despite the occasional maintenance overhead

2-particle test events

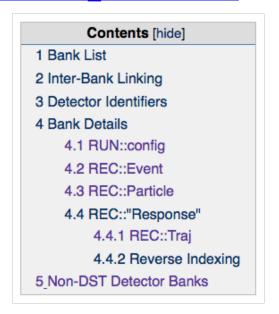
- electron plus another, in different sectors
 - e⁻: 1-9 GeV
 - other (hadron/photon): 1-4.5 GeV
- Clas12FastMC at generator level to ensure expected trajectories intersect all relevant detectors
 - i.e. account for B-fields, acceptance
 - very useful tool, needs to be extended to CD/FT

Index of /clas12offline/distribution/coatjava/validation_files/eb

<u>Name</u>	Last modified	Size Description	
Parent Directory		-	
4a.2.2-fid-r10-10K	/ 16-Apr-2018 07:31	-	
4a.2.2-fid-r10/	10-Mar-2018 16:08	-	
4a.2.2-fid-r11/	10-Mar-2018 15:59	_	
4a.2.3-fid-r10-100/	10-Jun-2018 12:11	-	
4a.2.3-fid-r10/	20-Apr-2018 16:27	-	
4a.2.3-fid-r11/	20-Apr-2018 15:54	-	
4a.2.4-fid-r10-100/	28-Aug-2018 13:52	-	
4a.2.4-fid-r10/	28-Aug-2018 10:10	-	
4a.2.5-fid-r11-100/	06-Nov-2018 21:03	-	
4a.2.5-fid-r11/	06-Nov-2018 19:38	-	

_	
electronFTgamma.evio.gz	20-Apr-2018 16:27 2.9M
electronFTpion.evio.gz	20-Apr-2018 16:27 4.4M
electrongamma.evio.gz	20-Apr-2018 16:27 3.7M
electrongammaC.evio.gz	20-Apr-2018 16:27 3.0M
electrongammaFT.evio.gz	20-Apr-2018 16:27 4.5M
electronkaon.evio.gz	20-Apr-2018 16:27 4.9M
electronkaonC.evio.gz	20-Apr-2018 16:27 3.7M
electronneutron.evio.gz	20-Apr-2018 16:27 3.4M
electronneutronC.evio.gz	20-Apr-2018 16:27 3.0M
electronpion.evio.gz	20-Apr-2018 16:27 5.1M
electronpionC.evio.gz	20-Apr-2018 16:27 3.8M
electronproton.evio.gz	20-Apr-2018 16:27 4.7M
electronprotonC.evio.gz	20-Apr-2018 16:27 3.5M

Forward Detectors				MC	Γruth		
		е	π	K	р	γ	n
P 2	е	98					
	π		89	17	<1		
	K		5	72	<1		
	р		3	5	95		
	γ					93	30*
	n					3	65


A rough efficiency based on 1K events for each, averaged over given kinematics, used to help track software development. For e / hadrons, demoninator requires a track; any other detector/reconstruction inefficiencies, kaon decay, track-matching, etc, are absorbed. Empty cell means <<1%. *Cut currently at $\beta=0.9$ (2 GeV).

Documentation

- https://clasweb.jlab.org/wiki/index.php/CLAS12_DSTs
- https://clasweb.jlab.org/wiki/index.php/CLAS12_EventBuilder

Contents [hide] 1 Overview 2 Output Banks 3 Beam Helicity 4 Beam Radio Frequency 5 Particle Creation 5.1 Charged Particles 5.2 Neutral Particles 5.3 Forward Tagger 6 Event Start Time 7 Particle Identification 7.1 Electron/Positron 7.2 Charged Hadrons 7.2.1 Cherenkov Vetoes 7.3 RICH 7.4 Neutrals 8 CLAS Calibration Database 8.1 ECAL Sampling Fraction Parameterization

Please check it out when you have questions/concerns about DST format and Event Builder, and give feedback! Almost all questions we've received about EB and DSTs were already answered there, else updated!

Summary

Updates since November

- Beam charge moved to decoding stage
 - with hipo4 event tags, based on RCDB run start time for FCUP offset subtraction to avoid clock rollover
 - meanwhile, online clock reduced to 100 kHz in 2019 to avoid rollover
- EPICS banks decoded to JSON in HIPO4 bytearray bank
- First version of FT-based start time in development and validation
- Many-to-one track-to-hit relationship implemented for studying and optimizing time-based tracking efficiency
- HWP position incorporated in CCDB and helicity corrected during reconstruction (raw info still preserved)
- Bugfixes
 - Propagate some missing REC::Response.status
 - Missing sector in REC::Cherenkov

TODO

- Turn on (and adjust?) z-vertex correction to start time
 - Only after DC-CVT relative alignment
- Switch to trajectory banks for path lengths
 - Pending updated trajectory banks
- Move FT to standard REC::Cal/Sci banks
- Investigate
 - possible track-hit matching improvements
 - alternative/better identification schemes
- Incorporate RICH, and now BAND, pending input from detector groups

