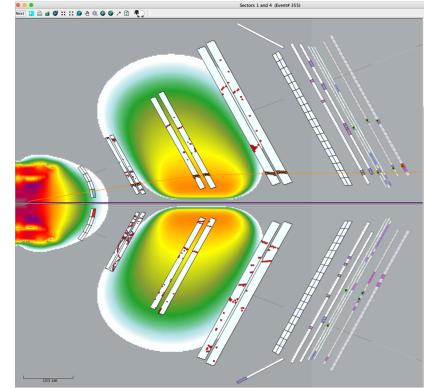
Trigger Upgrades and Performances

Valery Kubarovsky

Jefferson Lab


March 05, 2018

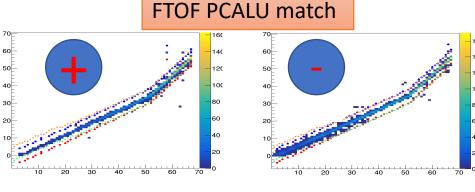
Trigger Physics Requirements

- Run Group A (11 GeV, hydrogen target, 13 proposals) 2018, spring-fall
 - Electron trigger
 - inbending/outbending configurations
 - MesonX, "photoproduction" trigger
 - Electron detected in the Forward Tagger (calorimeter AND hodoscope in coincidence)
 - Two charge particles in different sectors of the CLAS12 spectrometer
 - "Muon" trigger (opposite sectors trigger)
 - $J/\psi \rightarrow \mu^+\mu^-$
 - 2 MIP particles in *opposite sectors*
- Run Group K (6.5-7.5 GeV, hydrogen target, 3 proposals) 2018, autumn
 - Electron (outbending)
 - FT trigger, electron in FT and additional particle in the forward and/or central detectors
- Run Group B (11GeV, deuterium target, 9 proposals) 2019, running now
 - Electron trigger
 - "Muon" trigger
 - Nobody wrote a proposal for the photoproduction out of neutron -> No FT trigger ⊗

• Trigger detectors

- High Threshold Cherenkov Counter (HTCC)
- Preshower calorimeter (PCAL)
- EC calorimeter (ECAL)
- DC roads
- Trigger parameters
 - HTCC minimum number of photoelectrons >2
 - PCAL minimum cluster energy > 60 MeV
 - PCAL+ECAL sum of the energy deposition > 300 MeV
 - DC segments and roads matching PCAU

Forward Tagger Triggers


• Trigger detectors

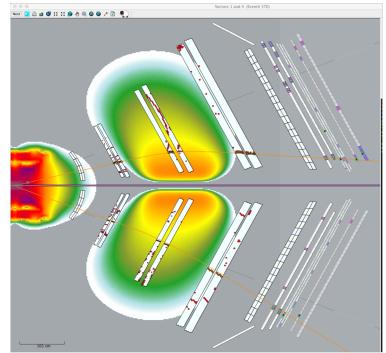
- Forward tagger calorimeter (FTCal)
- Forward tagger hodoscope (FTHodo)
- Forward time of flight (FTOF)
- Preshower calorimeter (PCAL)
- EC calorimeter (ECAL)
- DC track segments and roads
- Central time of flight (CTOF)
- Central neutron detector (CND) matching CTOF

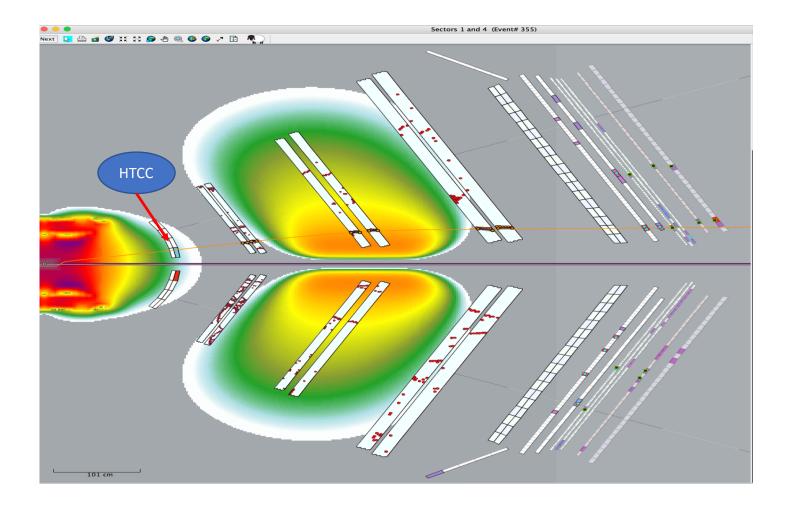
• Trigger parameters

- Cluster energy in forward calorimeter [0.2-4.0] GeV
- Hits in two layers of FTHodo matching the FTCal cluster position
- PCAL cluster energy > 10 MeV
- Hits in FTOF matching PCAL U-strips
- DC roads
- Hits in CTOF detector and/or CND detector
- Trigger configurations
 - FTCal x FTHodo coincidence with FTOF x PCALxUstrips in two CLAS sectors
 - FTCal xFThodo coincidence with FTOFxPCALxUstrips and CTOF (prescaled)

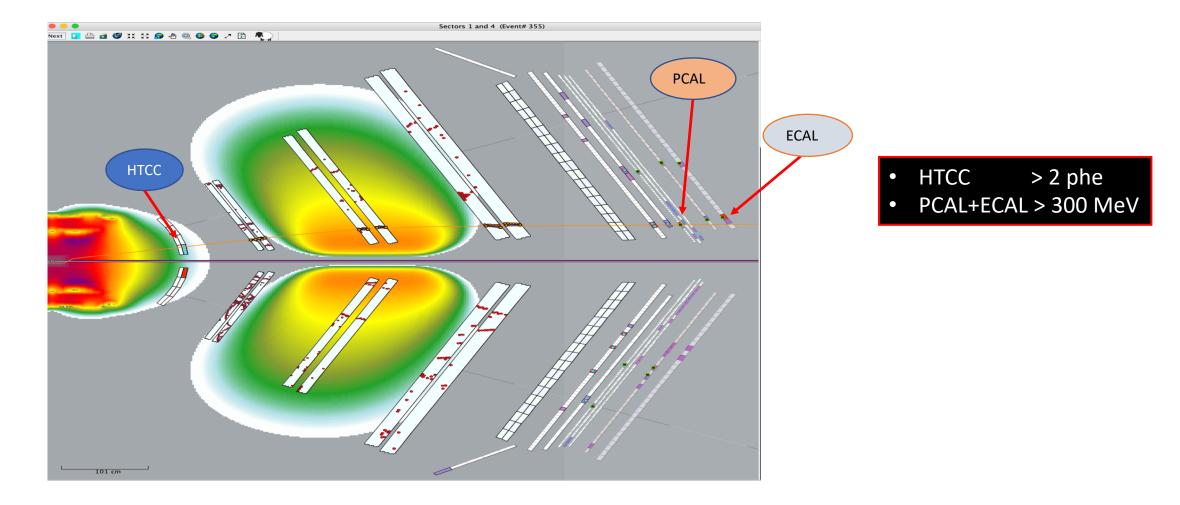
Positive particles

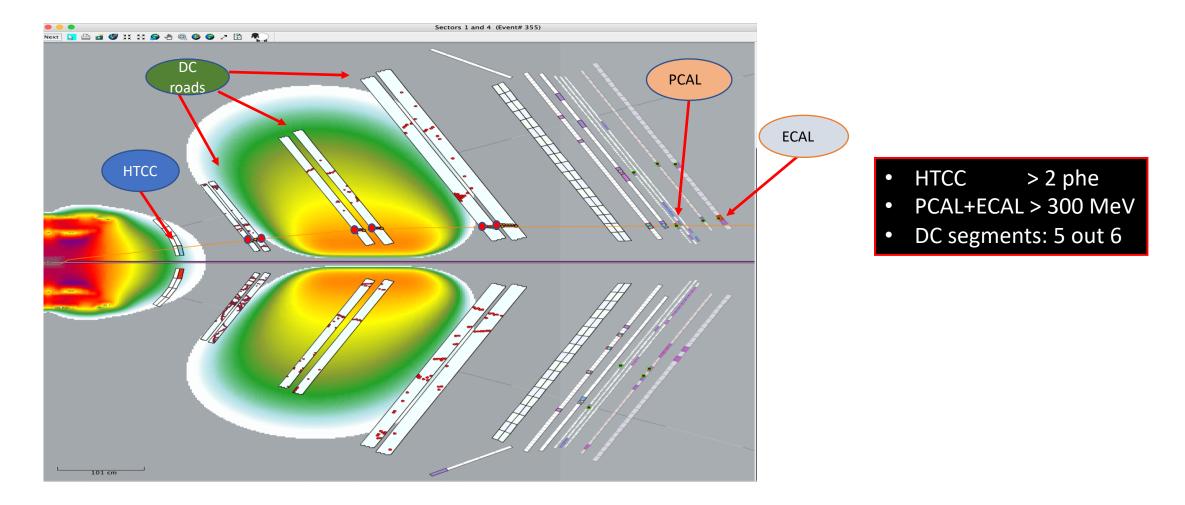
Negative particles

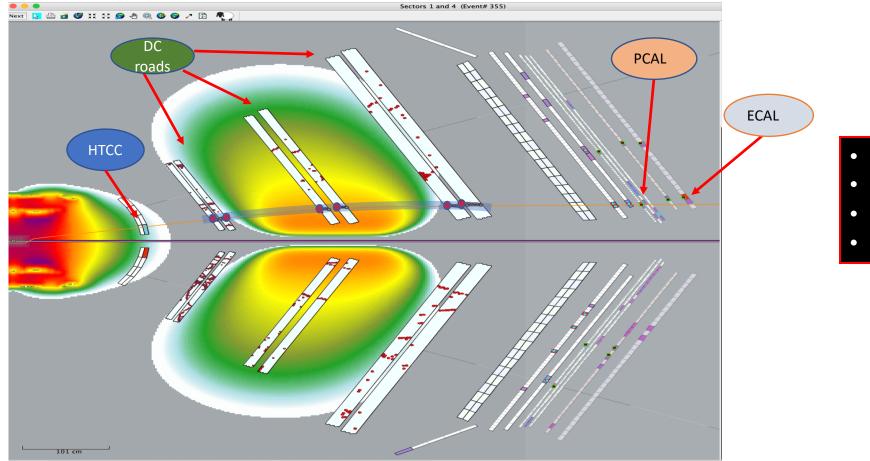

"Muon" Trigger, J/ $\psi \rightarrow \mu^+\mu^-$ decay

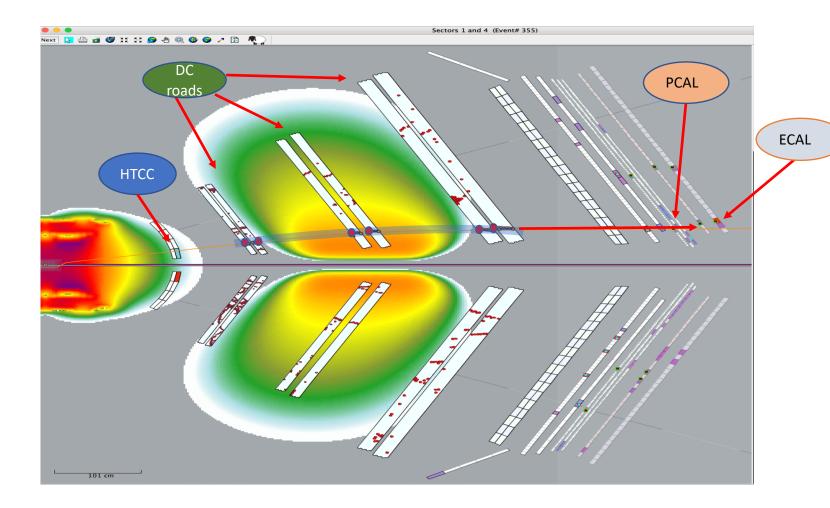

Trigger detectors

- Preshower calorimeter (PCAL)
- Forward Time of Flight (FTOF)
- EC calorimeter (ECAL)
- DC roads
- FTOF-PCALU match

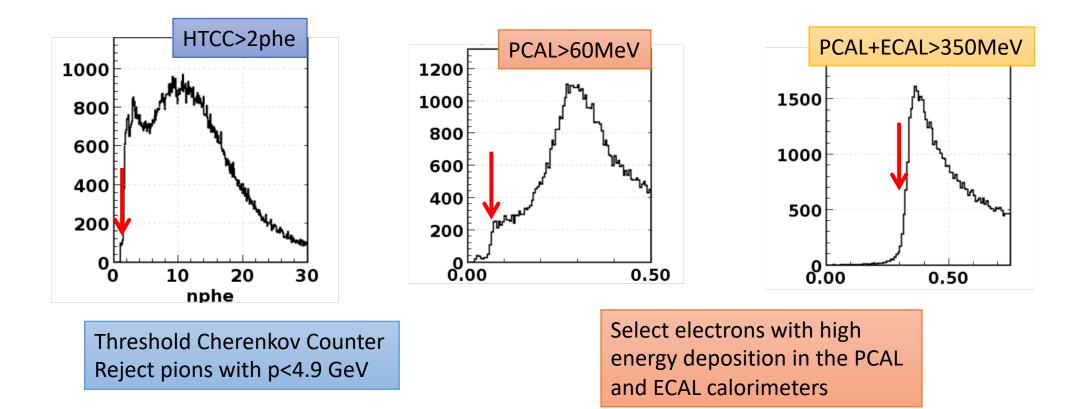

• Trigger parameters


- PCAL cluster energy [>10] MeV
- ECAL cluster energy [40-120] MeV
- Hits in FTOF matching PCAL U-strips
- DC roads for positive and negative particles in opposite sectors
- Trigger configuration
 - PCAL x ECAL x FTOF x PCAU strips in opposite sectors




• HTCC > 2 phe

- HTCC > 2 phe
- PCAL+ECAL > 300 MeV
- DC segments: 5 out 6
- DC roads

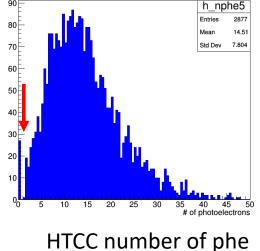


- HTCC > 2 phe
- PCAL+ECAL > 300 MeV
- DC segments: 5 out 6
- DC roads

•

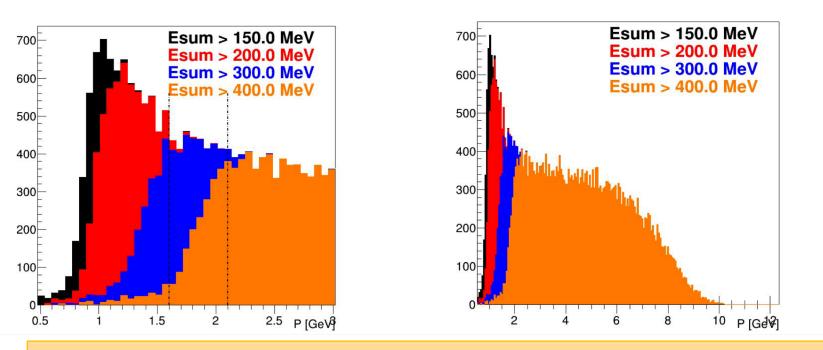
• PCALU and track match

Electron Trigger Parameters

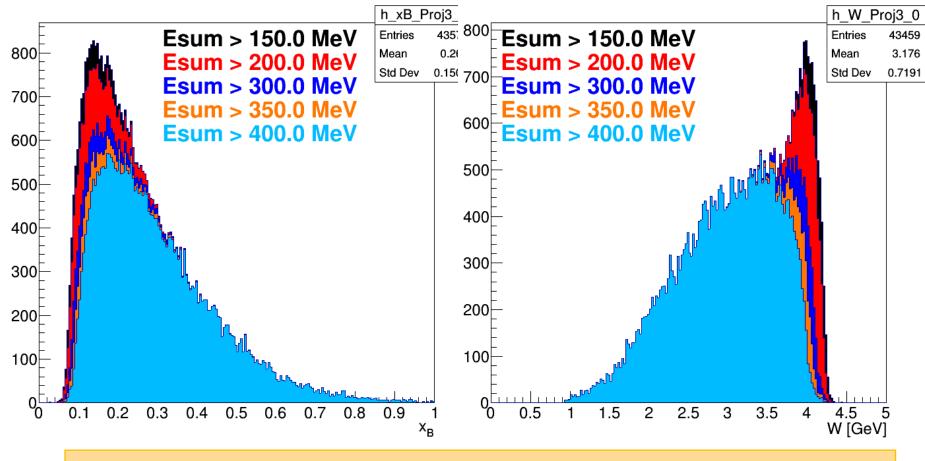

• Main trigger parameter

$$E_{SUM} = E_{PCAL} + E_{ECAL}$$

- For a moment this parameter is in the range 150-350 MeV depending on the experiments request
- HTCC threshold = 2 phe.



This is integrated over all HTCC counters efficiency


Electron Momentum and PCAL+ECAL cuts

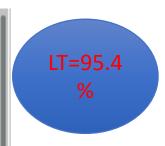
- Control the trigger rate: the higher the threshold the lower the rate
- Affect the detected electron momentum and reaction kinematic

PCAL+ECAL=300 MeV corresponds P_e ~1.6 GeV when trigger is 100% effective.

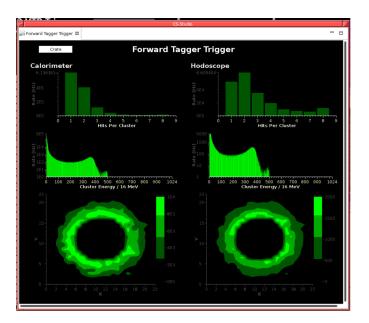
PCAL+ECAL affects x_B and W distributions

PCAL+ECAL sum is important trigger parameter. It affects the kinematics, mostly W.

Trigger Slow Control


Electron trigger 4.2 kHz

Muon trigger
3.4 kHz


FT trigger 6.4 kHz

Μ	Menu CLAS12 VTP Trigger 11/03/2018 03:56:02							
В	eam Curre 55.0	ent (nA) 2C21	Electr	on Alarms	1-6 Tolerance:	Livet	ime	
			1-0;	NU_ADAKM	1-6 Iolerance:	0.40 TS	95.4 % 🔘	
	52.5	FCup		Totals (Hz) 2575393	15333	Pulse	r 96.0 %	
Bit	De	scription		Raw (Hz)	Prescaled (Hz)	Fraction (%)	Prescale	In Totals
0	Electro	n - OR of	1-6	4178	4177.6	26.82	0	
1	s	ector 1		723	722.9		0	
2	s	ector 2		585	585.1		0	
з		ector 3		624	624.0		0	
4		ector 4		759	758.8		0	
5	s	ector 5		737	736.9		0	
6	s	ector 6		761	760.8		0	
7	Elctron OR	no DC >3	300Me∨	6156	186.5	1.20	6	
8	PCALXE	CAL>10	Me∨	336639	164.3	1.05	12	
13	DCxFTOF	xPCUxPC	AL S1	74637	4.6	0.03	15	
14	DCxFTOF	xPCUxPC	AL S2	72307	4.4	0.03	15	
15	DCxFTOF	xPCUxPC	AL S3	76519	4.7	0.03	15	
16	DCxFTOF	xPCUxPC	AL S4	76734	4.7	0.03	15	
17	DCxFTOF	xPCUxPC	AL S5	76394	4.7	0.03	15	
18	DCxFTOF	xPCUxPC	AL S6	73737	4.5	0.03	15	
19	FTOFxPC	CALXECAL	1-4	1225	1225.1	7.86	0	
20	FTOFxPC	CALXECAL	2-5	1054	1054.4	6.77	0	
21	FTOFxPC	CALXECAL	3-6	1154	1154.2	7.41	0	
24	FTxHDxFT	OFxPCAL	×CTOF	15909	482.1	3.09	6	
25	FT×HD×(F	TOFxPCA	L)^2	6441	6441.1	41.35	0	

DAQ accept 15 kHz events @ 95% live time

Forward tagger trigger control

RG-A: Hydrogen target

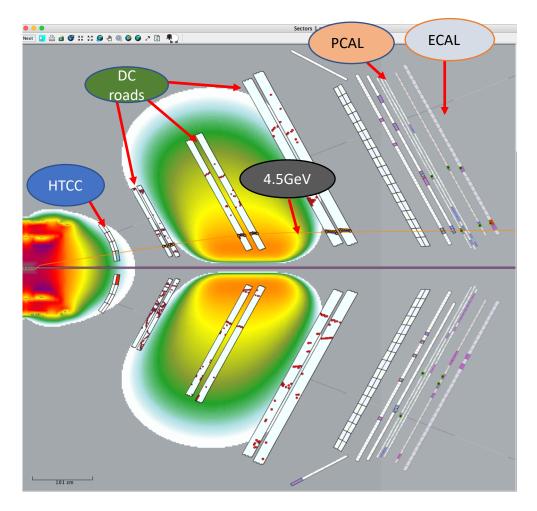
Trigger	Rate @ 55 nA Inbending	%	l= 55 nA
Electron	4.2 kHz	30%	LT=95%
Photoproduction	6.4 kHz	46%	
"Muon"	3.4 kHz	24%	
Total	14 kHz	100%	

Trigger	Rate @ 40 nA Outbending	%
Electron	7.9 kHz	54%
Photoproduction	4.5 kHz	30%
"Muon"	2.4 kHz	16%
Total	15 kHz	100%

I=40nA LT=95%

RG-B: Deuterium target

Trigger	Rate	Tr. Conditions
Electron	5.3 kHz	DC negative roads PCU space correlation
Muons	10 kHz	+/- Roads FTOF-PCALU space correlation

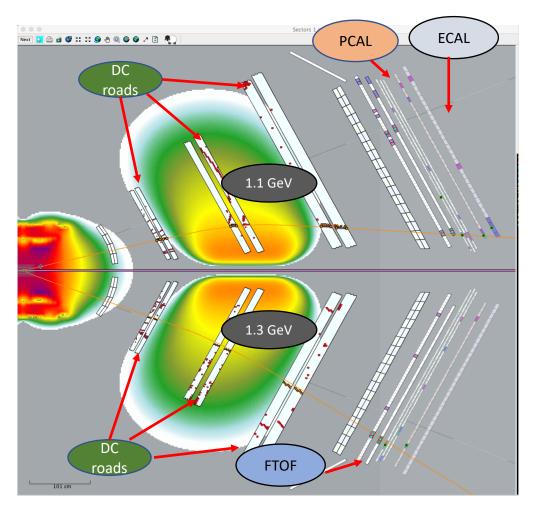

• Current	= 50 nA
-----------	---------

- Total rate = 15 kHz
- Life time = 95%

			CS	-Studio			
	🔛 CL	AS12 Trigger Bits 🛛 🔛 Cl	AS12 Trigger Bits	22			
		enu CLASI2 eam Current (nA) Elec 49.9 2C21 48.5 FCup	5: NO_ALARM Totals (Hz)	1-6 Tolerance:	02/21/2019 C Livetia 0.40 TS Pulser	me 95.1 <mark>O</mark>	
			34555	20858			In
1	Bit	Description	Raw (Hz)	Prescaled (Hz)	Fraction (%)	Prescale	Totals
L	0	Electron - OR of 1-6	5256	5078.0	25.2		
L	1	Sector 1	812	798.0			
L	2	Sector 2	782	820.0			
L	3	Sector 3	860	819.0		1	
L	4	Sector 4	987	922.0			
L	5	Sector 5	931	909.0			
•	6	Sector 6	900	830.0	10.0		
	7	Muon S1- S4+,EMAX	2536	2412.0	12.2		
1	8	Muon S2- S5+,EMAX	2565	2550.0	12.3		
	9	Muon S3- S6+,EMAX	2345	2409.0	11.2		
	10	Muon S4- S1+,EMAX	2581	2495.0	12.4		
	11	Muon S5- S2+,EMAX	2680	2627.0	12.8		
	12	Muon S6- S3+,EMAX	2440	2474.0	11.7	1	
1	13	Electron OR no DC	13649	134.0	1.0	100	
	14	Muon S1- S4+	3657	0.0			
-	15	Muon S2- S5+	3651	0.0			
	16	Muon S3- S6+	3522	0.0			
	17	Muon S4- S1+	3680	0.0			
	18	Muon S5- S2+	3826	0.0			
	19	Muon S6- S3+	3620	0.0			
	20	Muons(no EMAX) 1-4	6122	0.0			
	21	Muons(no EMAX) 2-5	6257	0.0			
	22	Muons(no EMAX) 3-6	6001	0.0			

 $\mu^{+/-}$

Electron Trigger RG-B



The trigger is 99% efficient for CLAS12 kinematics

Trigger conditions

Target	LD2
HTCC	> 2 phe
ECAL+PCAL	> 250-300 MeV
DC ROAD	Data based
Track-PCALU	Space correlation
Sign of the particle	Negative
Trigger purity	54% of events have PID=11 particle
Current	50 nA
Trigger Rate @50 nA	5 kHz

Muon trigger: RG-B

The trigger is 99% efficient for CLAS12 kinematics

Trigger conditions

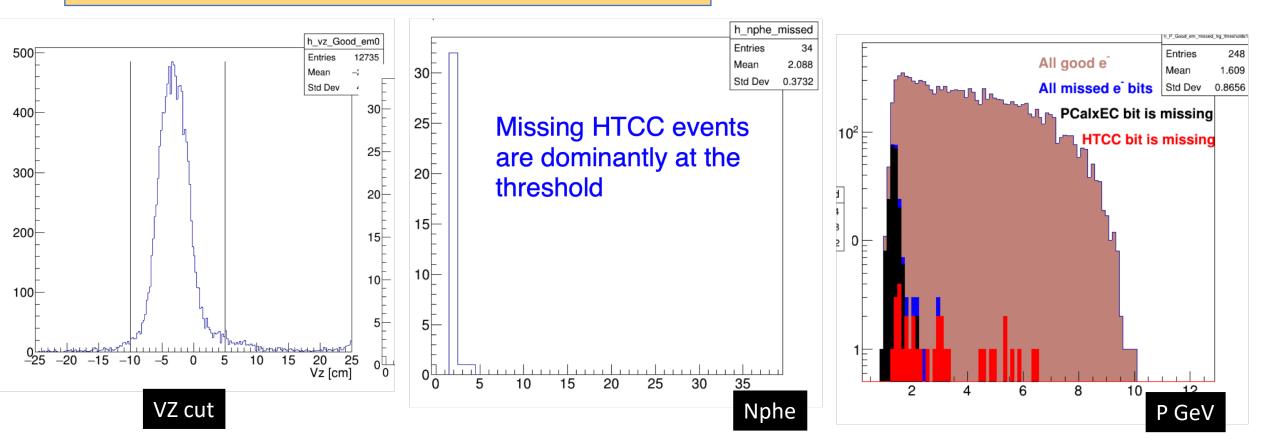
Target	LD2
PCAL	> 10 MeV
ECAL	40 <e<120 mev<="" td=""></e<120>
FTOF-PCALU	Space correlation
DC ROAD	GEMC based
Sign of the particle	Positive and Negative
Trigger purity	28% of events have 2 +/- TB tracks
Current	50 nA
Trigger Rate @50 nA	10 kHz

RG-K: Hydrogen target

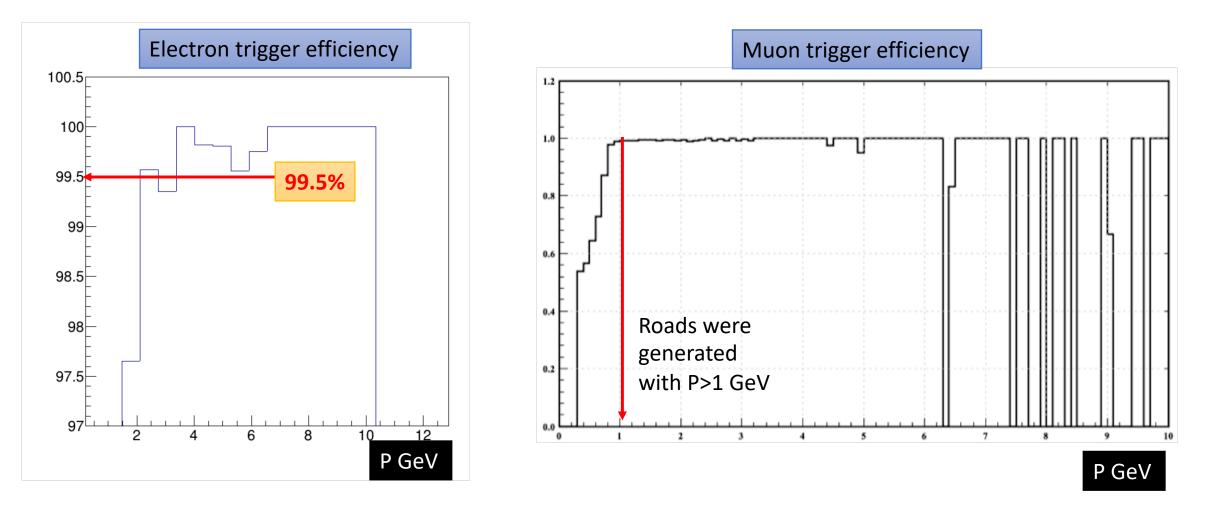
Only two triggers with zero prescale

- Electron trigger (outbending)
 HTCC x (PCAL+ECAL) x DC segments (5/6)
 DC on/DC off=0.97. So, DC-roads were not used.
- Forward tagger trigger (#29)
 FT(1.8-6.6 GeV)x(FTOFxPCALU)xDC
 We demand cluster in the FT with the energy between 1.8 and 6.6 GeV and at least one charge particle going in forward direction hitting PCAL and TOF.

já CL	AS12 Trigger Bits 🛿 🎽 CL4	AS12 Trigger Alarn	ns			
		VTP Trig	1-6 Tolerance: 0	11/30/2018 1 Livetin		
	31.0 FCup	Totals (Hz) 1319302	17483	Pulser	92.9 %	
Bit	Description	Raw (Hz)	Prescaled (Hz)	Fraction (%)	Prescale	In Tot:
	Electron - OR of 1-6	9337	9336.6	53.40	0	
1	Sector 1	1512	1511.7			
2	Sector 2	1520	1519.7			
3	Sector 3	1594	1593.5			
4	Sector 4	1642	1642.5			
	Sector 5	1636	1636.5			
	Sector 6	1449	1448.8			
	Electron OR no DC	9622	74.6	0.43		
8	PCAL>10 x ECAL>10Me∨	144594	17.6	0.10	14	
13	1 FTOF x PCU x PCALxDC	32719	2.0	0.01	15	
14	2 FTOF x PCU x PCALxDC	31550	1.9	0.01	15	
15	3 FTOF x PCU x PCALxDC	32764	2.0	0.01	15	
16	4 FTOF x PCU x PCALxDC	32729	2.0	0.01	15	
17	5 FTOF x PCU x PCALxDC	32520	2.0	0.01	15	
18	6 FTOF x PCU x PCALxDC	32302	2.0	0.01	15	
24	FTxHDxPCALUxCTOFxDC	4251	0.3	0.00	15	
25	FTxHDx[PCALUxDC]^2	773	0.0	0.00	15	
26	FT(1.8-6.6)GeV x HD	75021	4.6	0.03	15	
27	FT > 100 Me∨	832462	50.8	0.29	15	
29	FTxHDxFT0FxPCALxDC	7512	7512.4	42.97		
31	Pulser	100	99.8	0.57		

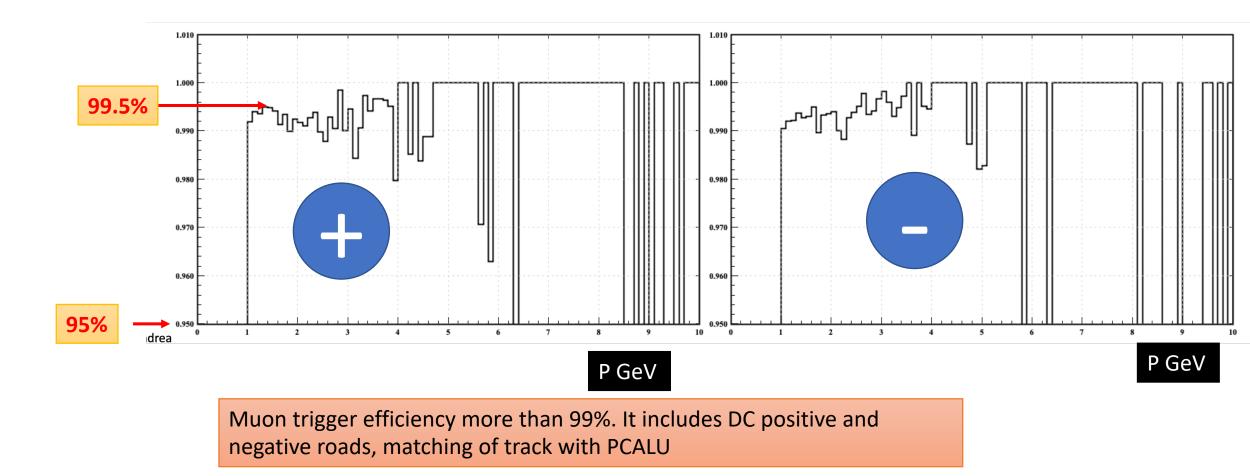

- Production current 30 nA
- Trigger rate total 17 kHz
 - Electron trigger 9.5 kHz
 - FTxHDx(one forward going particle) 7.5 kHz
- Data rate 325 MB/s
- Live time 95%

Strategy of the Trigger Validation


- Take random trigger run, usually with the same current as in production data taking. This is completely unbiased trigger.
- Cook data and select the events of interest
 - Electron, PID=11 with the fiducial volume cuts
 - Events with the tracks in the opposite sectors (for muons)
- Apply the trigger cuts to the selected events: HTCC, PCAL, ECAL, FTOF, for example: HTCC>2phe, PCAL+ECAL>300 MeV, MIP signal in calorimeters for muons...
- Check the trigger bit. If it is ON -> the trigger is effective
- Electron trigger, Forward tagger trigger and "muon" trigger were validated in such a way.
- The trigger efficiency for these selected events and different reactions was found to be very close to 100%.

Electron Trigger Validation

- Random trigger
- Select electron in the Forward direction
- HTCC and PCALxECAL are in the same sector
- Apply vertex cut, HTCC and PCALxECAL cuts



Trigger Efficiency

• The DC-roads and space matching between track and PCALU were found to be 100% efficient

Muon trigger efficiency for positive and negative particles

Trigger Improvements

- Data based road maps with better resolution, 80K DC-roads in the dictionary
- Track PCALU space matching. HTCC is the next in the line to be matched with track
- Positive and negative particles in opposite sectors in muon trigger

DC roads and matching with PCALU	2.5 electron trigger reduction rate
Electron trigger purity (inbending)	54% of events have time based track and reconstructed as PID=11 particle (electron)
Electron trigger purity (outbending)	72% even without DC roads
Muon trigger purity (any particles)	46% of events have two time-based tracks in opposite sectors
Muon trigger purity (+/-)	28% of events have one positive and one negative track in opposite sectors
Trigger efficiency	> 99% for all types of trigger

Conclusion

- The CLAS12 trigger is fully operational
- The trigger requirements of all three groups were satisfied
- Completed first part of data taking for Run groups A and K
- Run group B is taking production data
- Three physical triggers were developed:
 - Electron trigger
 - Forward tagger trigger
 - Muon trigger
- DC road trigger together with geometrical match with PCALU give very good result
- All triggers were validated and demonstrated high (>99%) efficiency
- The electron trigger purity during the last run was 54% (inbending) and 72% (outbending)
- Muon trigger has 28% trigger purity for pair of positive and negative particles
- We looking forward to discuss the future experiments in HALL-B with spokespersons