Photoproduction of Λ* Resonances at CLAS

CLAS Collaboration Meeting March 07, 2019

U. Shrestha, T. Chetry and K. Hicks Ohio University

Λ^*

- Missing baryon resonances play important role to explore the fundamental degrees of freedom inside hadrons.
- Study of quark dynamics to determine properties of hadrons that are responsible for spectrum of hadrons.

 Λ^*

- Missing baryon resonances play important role to explore the fundamental degrees of freedom inside hadrons.
- Study of quark dynamics to determine properties of hadrons that are responsible for spectrum of hadrons.

Motivation

Particle	J^P	$\begin{array}{c} \mathbf{Overall} \\ \mathbf{status} \end{array}$	$N\overline{K}$	$\Lambda\pi$	$\Sigma\pi$	Other channels
$\Lambda(1116)$	1/2 +	****		F		$N\pi$ (weakly)
$\Lambda(1405)$	1/2-	****	****	0	****	
$\Lambda(1520)$	3/2 -	****	****	r	****	$\Lambda\pi\pi,\Lambda\gamma$
$\Lambda(1600)$	1/2+	***	***	b	**	
$\Lambda(1670)$	1/2-	****	****	i	****	$\Lambda\eta$
$\Lambda(1690)$	3/2 -	****	****	\mathbf{d}	****	$\Lambda\pi\pi,\Sigma\pi\pi$

Photo-prodution off a proton creates a Λ^* , which can decay by $\Sigma \pi$ channel. With Σ giving n & π , the final particles detected are K⁺, π^+ & π^- .

Outline (Cuts)

Trigger	$\Sigma^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	$\Sigma^{\text{-}}\pi^{\text{+}}$
Data	~78 %	~78 %
MC	~74 %	~77 %

- Photon selection \rightarrow 1 and 2 photon case (Photon Multiplicity)
- The g12 trigger: all three particles detected in three different sectors.
- PID \rightarrow K⁺, π^+ , π^- . Straight cuts of 1 ns on Momentum Vs Timing plots were made for particle identification.
- Fiducial and Paddle Cuts for the g12 requirements were carried out.
- A series of Missing Mass cut was followed to obtain the nature of Λ^* resonances.
- Further analysis includes an appropriate binning and fitting scheme to obtain yield and acceptances for differential cross-section.

$0.9 \leq MM(K^{+}\pi\pi) \leq 1$	Select neutron events
$0.48 \le IM(\pi^+\pi^-) \le 0.51^-$	Remove nK ⁰ channel
$1.15 \le MM(K^+\pi^-) \le 1.25$ $1.15 \le MM(K^+\pi^+) \le 1.25$	Select Σ^+ and Σ^- events for exclusive $\Sigma\pi$ channels
$1.44 \leq MM(K^{\scriptscriptstyle +}) \leq 1.6$	Fitting Range
$2.15 \le W \le 2.45 \text{ GeV}$ - $0.9 \le \cos \theta^{\text{K+}}_{\text{cm}} \le 0.9$	Kinematic Ranges

Global Spectrum

 $\Lambda (1520) \rightarrow \Sigma^{-} + \pi^{+}$

$$\Lambda (1520) \rightarrow \Sigma^{+} + \pi^{-}$$

Global spectrum integrated over all angles leads towards fitting the $\Lambda(1520)$ peak with a Lorentzian function that rests on a smooth quadratic background.

Bin Scheme

Data: Binning Scheme

Fitting

Yield & Acceptance

Yield

Lorentzian Signal Fit

Acceptance

 $Acceptance = \frac{Accepted Events}{Generated Events}$

GEANT Based MC Simulation

 $2.25 < W(K^{+} \pi^{+} \pi^{-}) < 2.35$ $2.35 < W(K^{+} \pi^{+} \pi^{-}) < 2.45$ 10 10 Σ⁻ π⁺, g12 $\Sigma^{-}\pi^{+}$, g12 8 8 Acceptance (per 100 events) Acceptance (per 100 events) 6 6 0 0 0.2 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.4 -0.8 -0.6 -0.4-0.2 0 0.2 0.4 0.6 0.8 cosec.m $cos\theta_{K^+}^{c.m}$

Differential Cross-section

Differential Cross-section

$$\frac{d\sigma}{dCos\theta_{K^{+}}^{c.m.}} = \frac{Y_{d}}{\tau \Delta cos\theta_{K^{+}}^{c.m.} A L(W)}$$

 $\tau = Branching \ ratio$ $Y_d = Signal \ Yield$ A = Acceptance $\Delta \cos \theta_{K^*}^{c \cdot m \cdot} = Width \ of \ cos\theta \ bin$ L(W) = Luminosity

 $2.25 < W(K^{+} \pi^{+} \pi^{-}) < 2.35$

 $2.35 < W(K^+ \pi^+ \pi^-) < 2.45$

Preliminary!!!

Differential **Cross-section**

$\Lambda(1520)$ dcs for $\Sigma^+\pi^-$ & $\Sigma^-\pi^+$ channels with g11 CLAS results

 $2.25 < W(K^{+} \pi^{+} \pi^{-}) < 2.35$ do do do do sec.m.(µb) $\frac{d\sigma}{dcos\theta_{K^{*}}^{c.m.}(\mu b)}$ $\Sigma^{+} \pi^{-}, g12$ $\Sigma^{-}\pi^{+}, g12$ 10^{-2} Moriva(2013) 10^{-2} -0.8 -0.6 -0.4 -0.2 0 0.8 -0.8 -0.6 -0.4-0.2 0.2 0.4 0.6 0 cosθ^{c.m}_{κ⁺}

 $2.35 < W(K^{+} \pi^{+} \pi^{-}) < 2.45$

Preliminary!!!

Next

- The $\Lambda(1520)$ cross section using CLAS g12 data set show consistent shape.
- Screening the run list to select only good runs from the inclusive good run list as provided by the g12 analysis procedures.
- Beam energy corrections and z-vertex cut will also be employed.
- More stringent cuts are to be applied to the particle identification procedure. A momentum dependent timing cuts will be employed.
- Momentum distribution for all three final state particles in all six sectors will be studied for MC and compared with that for the data.
- Proper modeling of the backgound and use of other fit funciton for background estimation are important. A bin-by-bin analysis of the yield values will follow for samples with poor fitting result.
- The Binning Scheme will be extended to higher W-ranges.
- Analysis of higher mass resonances, ie, $\Lambda(1670) \& \Lambda(1690)$, using partial wave analysis can be studied.

Analysis W

Extras

Used PART bank reconstruction for the	N/A	Yes	No
analysis. EVNT was NOT used			
Momentum corrections as described in	N/A	Yes	No
the g12 note			
Beam energy correction as described in	N/A	Yes	No
the g12 note			
Inclusive Good run list as described in ta-	N/A	Yes	No
ble 7. Individual analysis may use a subset			
of it			
Target density and its uncertainty as de-	N/A	Yes	No
scribed in the g12 note			
Photon flux calculation procedure as de-	N/A	Yes	No
scribed in the g12 note			
Lower limit for the systematic uncertainty	N/A	Yes	No
of normalized yield is 5.7%			
Photon polarization calculation procedure	N/A	Yes	No
as described in the g12 note			
Systematic uncertainty of the photon po-	N/A	Yes	No
larization as described in the g12 note			
gsim parameters	N/A	Yes	No
gpp smearing parameters	N/A	Yes	No
DC efficiency map	N/A	Yes	No
EC knockout	N/A	Yes	No