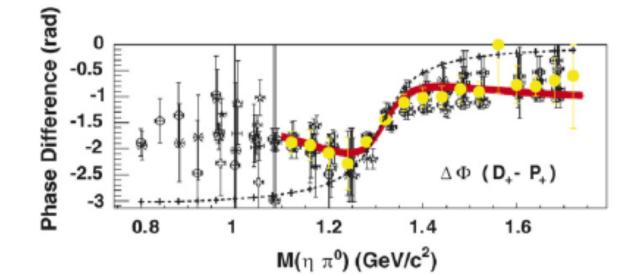

CLAS collaboration meeting


7 March 2019

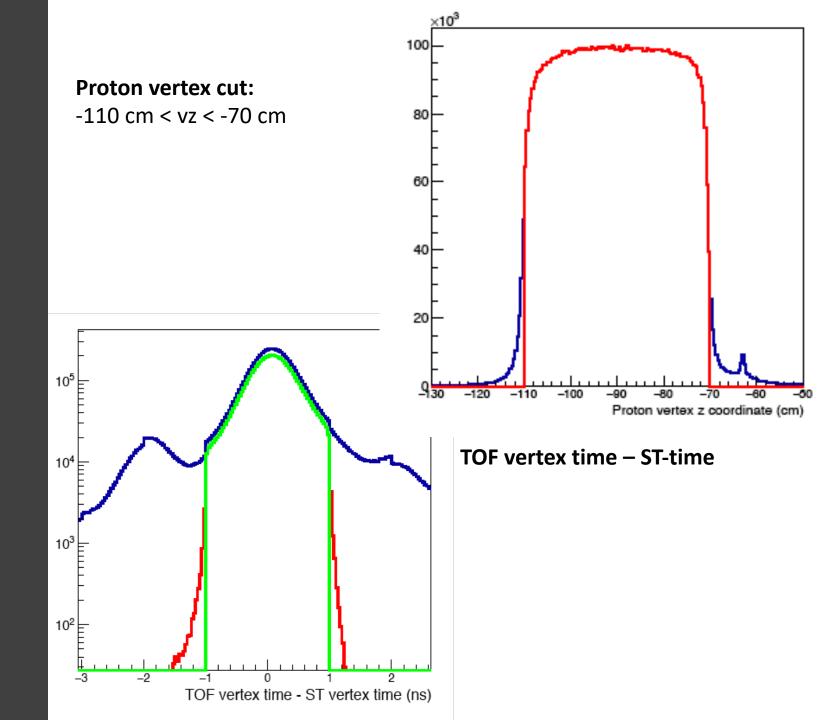
Analysis of the reaction $\gamma p \rightarrow p \pi^0 \eta$ with the g12 dataset

Introduction and motivation

- Due to the pseudoscalar nature of the two mesons, the π⁰η final state is a good candidate to search for exotics. Any P-wave resonance would be a 1⁻⁺ exotic state.
- This channel has been investigated by past experiments (VES, **E852**, Crystal Barrel): a possible exotic signal - π_1 (1400) - has been seen but still a definite answer is missing.
- I analyze the photo-production $\gamma p \to p \pi^0 \eta$ reaction using data from the CLAS-g12 dataset, exploiting the two-photons decay of both mesons
 - Large statistics
 - High-energy photon beam
 - Trigger optimized for neutrals in the final state

Events skimming

Runs selection:

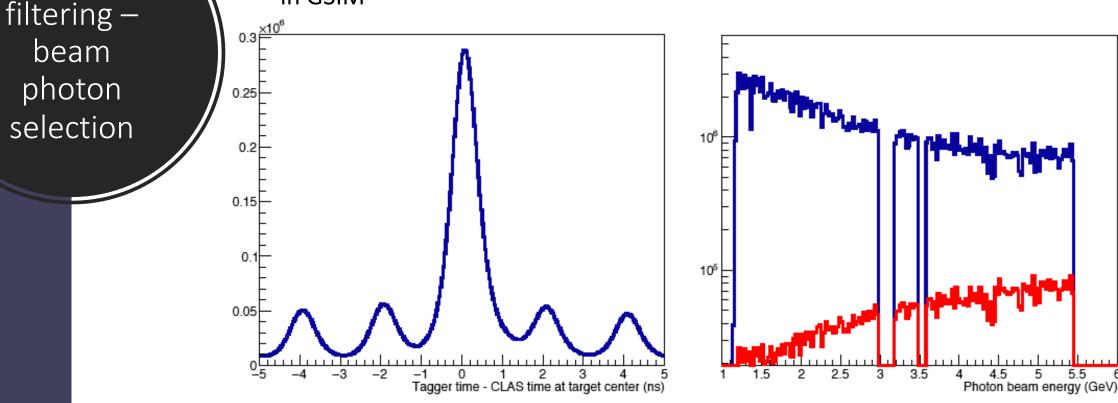

- Using g12runs -t pass1 -t flux -i
- Selecting only runs after 56653 (trigger)
- 462 runs selected, 48403 BOS files

Events selection (PART bank):

- 1 positive, 0 negatives, **at least** 4 neutrals, asking the positive to be a proton
- 60.6 M events selected
- Only skim #4 "4-not 2ctrk 2pos1neg 1ckaon1ctrk" was used
 - The others have each event with more than 1 charged particle

Events filtering

- All the procedures described in the official g12 analysis note have been strictly followed:
 - Eloss correction, momentum correction, beam energy correction, TOF knock-out fiducial cuts, EC cuts
- Other cuts include:
 - Proton vertex cut
 - TOF vertex time ST-time cut this cut is applied AFTER photon beam selection



Beam photon selection was performed by considering all entries in the TAGR bank and applying following cuts:

• Bad counters rejection

Events

- Coincidence between tagger time at target center and CLAS time at target center - <u>+</u> 1 ns window
 - If more than 1 photon satisfy above conditions, the event is rejected
 - Same procedure is applied for MC: accidentals to the TAGR bank are added in GSIM

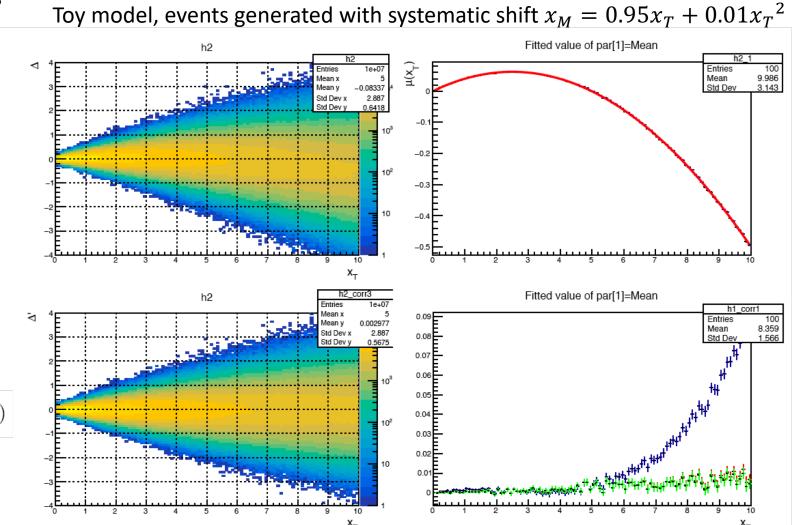
Events filtering – neutrals

- Only neutral particles measured in EC, with $\beta > 0$ were selected
- G12 specific fiducial cuts for neutrals were applied
- The energy of all neutrals in the fiducial region was recomputed by assuming the particle to be a photon:
 - $E = E_{EC}/0.272$ (0.272 is the so-called "EC_MAGIC_NUMBER", see PID, MakePart.c, gamma_energy function)
 - Angles from the original PART entry

SUMMARY:

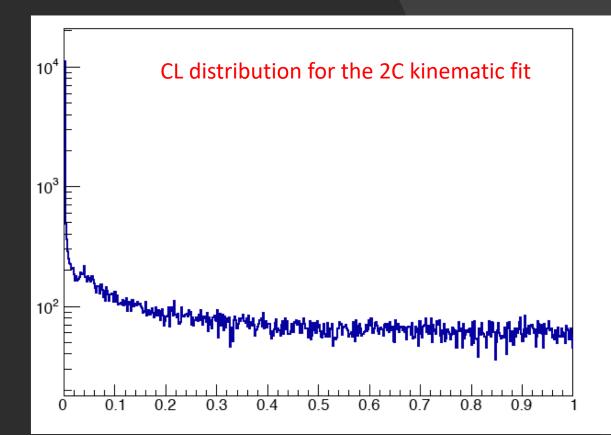
Selection	Number of events kept	Percentage
All events	$60.6 \mathrm{M}$	100%
Proton vertex z-cut	$57.9\mathrm{M}$	95.5%
Proton TOF knockout and fid. cuts	$51.6\mathrm{M}$	85.2%
Photon beam selection	$33.9\mathrm{M}$	56.0%
Proton vertex time cut	$33.8\mathrm{M}$	55.8%
Neutrals selection	$8.32\mathrm{M}$	13.7%

Goal: check and correct for systematic shifts in measured photon energy and angles

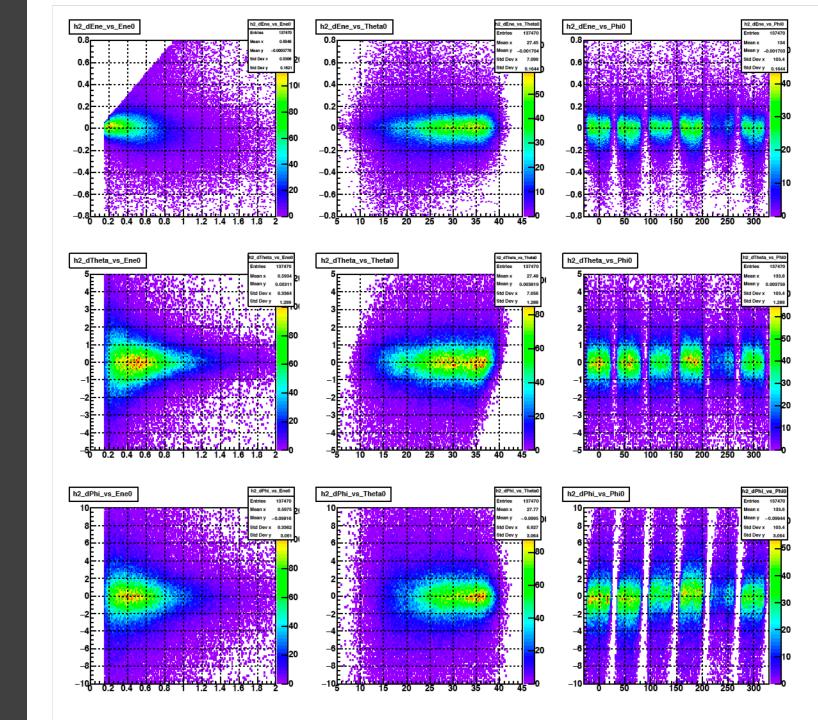

Method (1-D case, x variable)

- Make 2D plot of $\Delta = x_T x_M vs x_T$
- Slice along y axis and fit with Gaus function – plot average value μ(x_T) vs x_T
- Perform a best fit with "proper" function to get parameterization of $\mu(x_T)$
- Correct by iteration:

 $x_{C} = x_{M} + \mu(x_{T})$ $x_{C} = x_{M} + \mu(x_{M} + \mu(x_{M} + \mu(x_{M} + \dots)))$

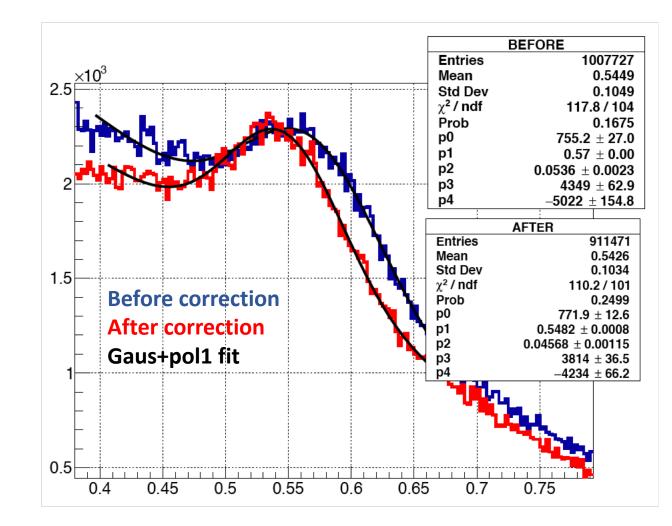

Method (3-D case)

As above, involves matrix formalism



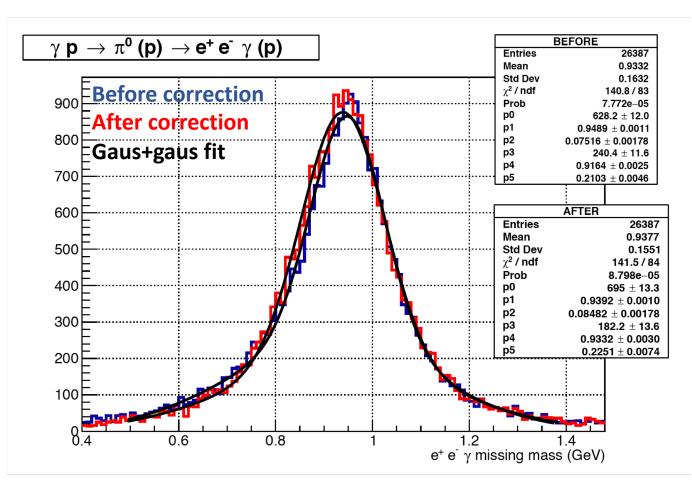
The method requires the knowledge of the "true" photon information to derive correction functions. This is trivial in MC. For data, I used the reaction $\gamma p \rightarrow p\pi^0 \rightarrow pe^+e^-\gamma$, threating the photon as missing and using the corresponding 4-momentum as the "true" information

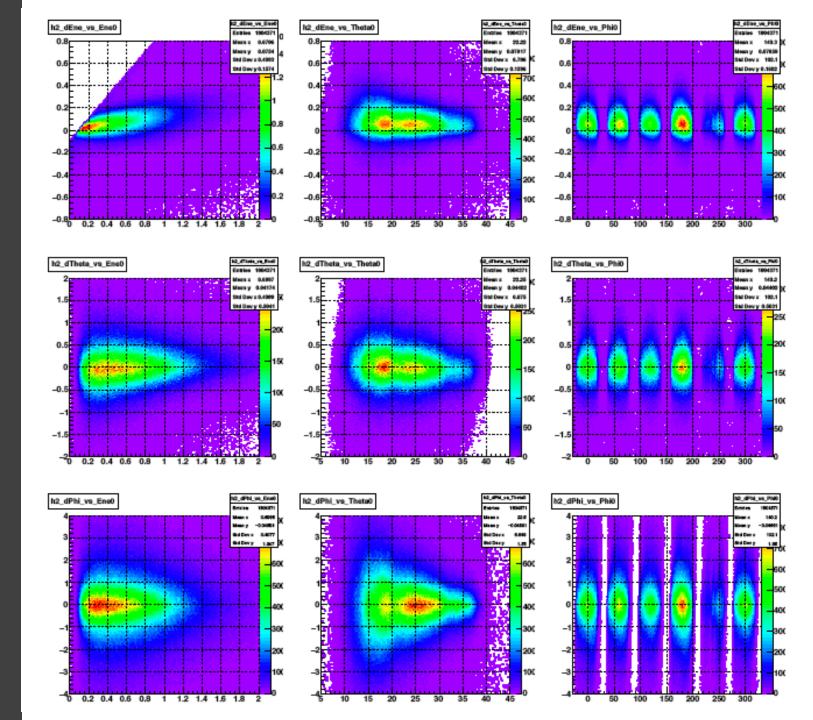
- Events skimming / selection / corrections performed as before, following what was done in MK analysis
- 2-C kinematic fit to the $\gamma p \rightarrow p\pi^0 \rightarrow pe^+e^-(\gamma)$ hypothesis allows to determine event by event the "true" photon information
 - Thanks for MK for setting up the kin. fitter for electrons and positrons!


- $\Delta = x_T x_M vs x_T$ for g12 photons, where "x" is $E - \theta - \varphi$
- No major shifts are present
- Following corrections have been implemented
 - μ_{EE} , $\mu_{ heta heta}$, $\mu_{arphi arphi}$ (first order)
 - $\mu_{E\varphi}$, $\mu_{\theta\varphi}$ (second order)

- $\Delta = x_T x_M vs x_T$ for g12 photons, where "x" is $E - \theta - \varphi$
- No major shifts are present
- Following corrections have been implemented
 - μ_{EE} , $\mu_{\theta\theta}$, $\mu_{\varphi\varphi}$ (first order)
 - $\mu_{E\varphi}$, $\mu_{\theta\varphi}$ (second order)

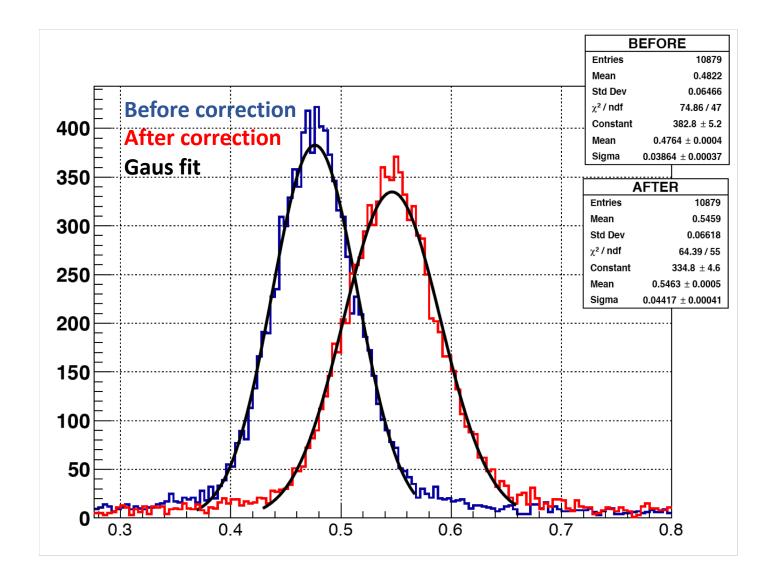
Corrections validation:


• π^0 and η invariant mass from two photons decay


- $\Delta = x_T x_M vs x_T$ for g12 photons, where "x" is $E - \theta - \varphi$
- No major shifts are present
- Following corrections have been implemented
 - μ_{EE} , $\mu_{ heta heta}$, $\mu_{arphi arphi}$ (first order)
 - $\mu_{E\varphi}$, $\mu_{\theta\varphi}$ (second order)

Corrections validation:

- π^0 and η invariant mass from two photons decay
- Missing mass of the $e^+e^-\gamma$ system (equal to proton mass)

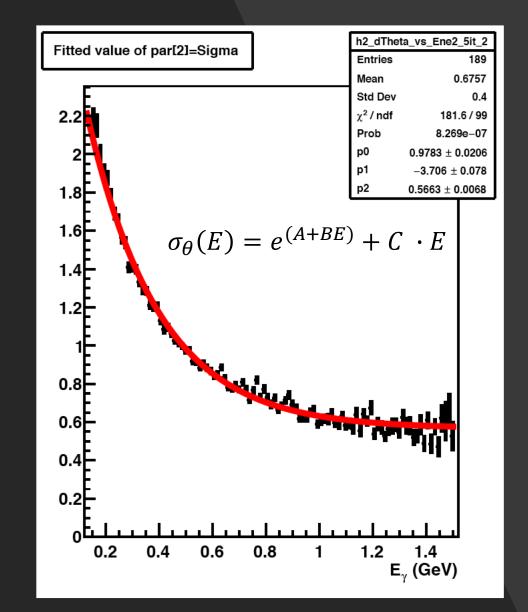

- $\Delta = x_T x_M vs x_T$ for g12 photons, where "x" is $E - \theta - \varphi$
- Major shift present for energy (not from gpp!)
- Following corrections have been implemented
 - μ_{EE} , $\mu_{ heta heta}$, $\mu_{arphi arphi}$ (first order)
 - $\mu_{E\varphi}$, $\mu_{\theta\varphi}$ (second order)

- $\Delta = x_T x_M vs x_T$ for g12 photons, where "x" is $E - \theta - \varphi$
- Major shift present for energy (not from gpp!)
- Following corrections have been implemented
 - μ_{EE} , $\mu_{\theta\theta}$, $\mu_{\varphi\varphi}$ (first order)
 - $\mu_{E\varphi}$, $\mu_{\theta\varphi}$ (second order)

Corrections validation:

• π^0 and η invariant mass from two photons decay

The previous procedure also allow to determine the photon energy and angle resolution – by looking at the width of the Gaussian fits performed in each slice


DATA:

• Energy resolution parameterized as:

 $\sigma_E(E) = A\sqrt{E} \oplus B,$

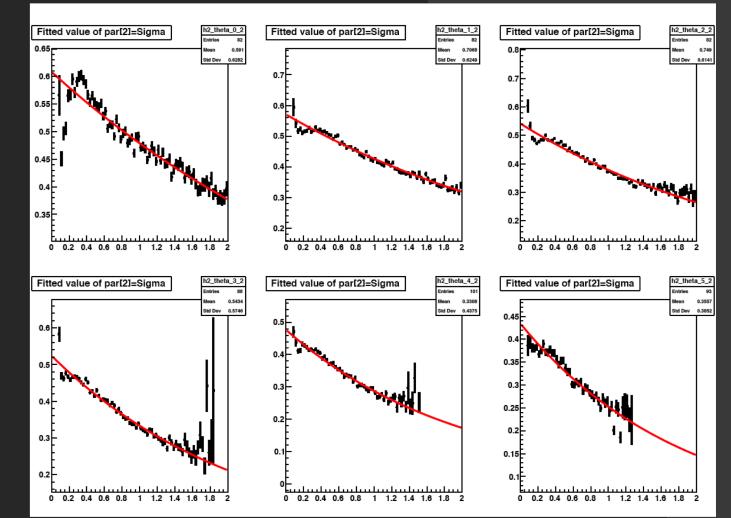
with independent parameterization per each sector and in 6 θ bins

- θ resolution parameterized as: $\sigma_{\theta}(E) = e^{(A+BE)} + C \cdot E$
- φ resolution parameterized as a polynomial depending on θ , in 4 different energy bins

The previous procedure also allow to determine the photon energy and angle resolution – by looking at the width of the Gaussian fits performed in each slice

MC:

• Energy resolution parameterized as:

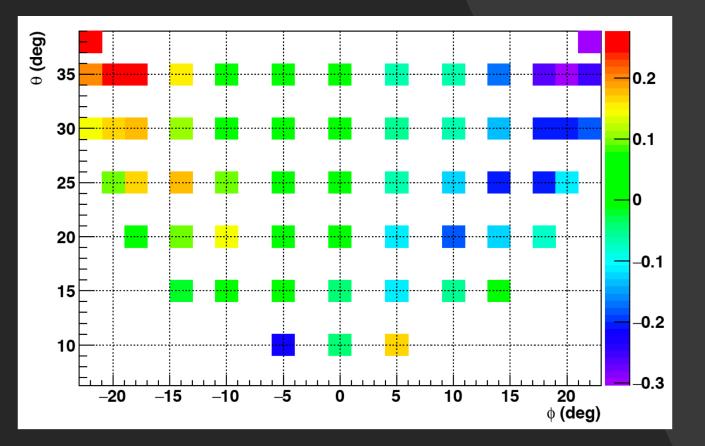

 $\sigma_E(E) = A\sqrt{E} \oplus B,$

with independent parameterization per each sector and in 6 θ bins

• θ resolution parameterized as: $\sigma_{\theta}(E) = e^{(A+BE)}$

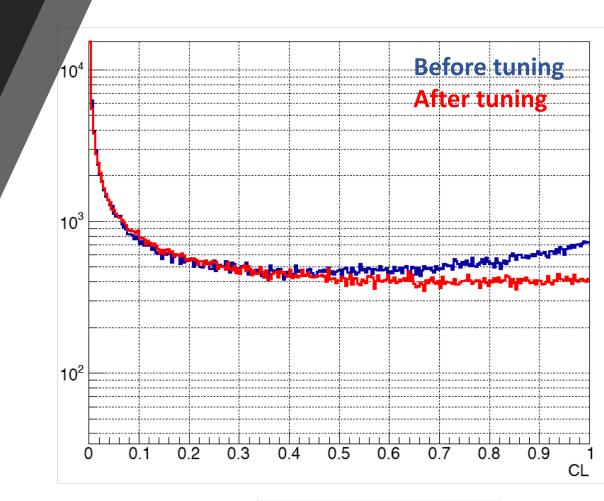
with independent parameterization in 5 θ bins

• φ resolution parameterized as a polynomial depending on θ , in 4 different energy bins



The knowledge of the photon resolutions allows to determine the diagonal elements of the corresponding covariance matrix.

Off-diagonal elements can be re-written by introducing correlations coefficients – this allows to decouple them from resolution

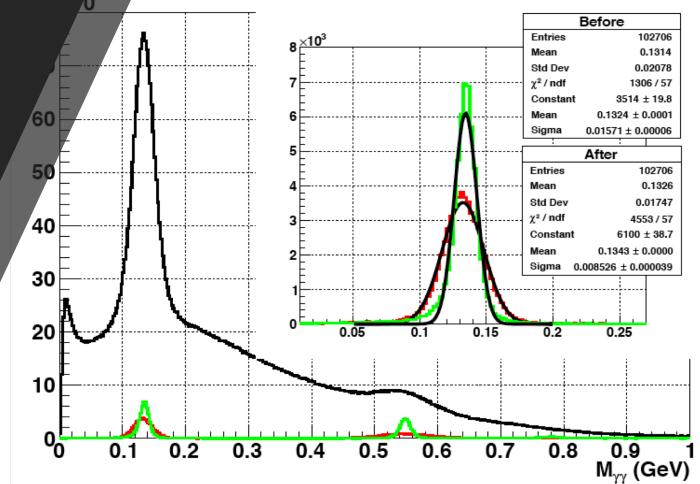

 $V_{p\theta} = \rho_{p\theta} \,\sigma_p \,\sigma_\theta$ $V_{p\phi} = \rho_{p\phi} \,\sigma_p \,\sigma_\phi$ $V_{\theta\phi} = \rho_{\theta\phi} \,\sigma_\theta \,\sigma_\phi$

- $\rho_{\theta\varphi}$ is related to the EC geometry (UVW -> xyz transformation). I determined it from MC, simulating $\gamma p \rightarrow p\pi^0 \rightarrow pe^+e^-\gamma$ with the photon at fixed angles in sector 1
 - I assumed $ho_{ heta arphi}$ is the same for all sectors
 - I assumed $ho_{ heta arphi}$ is the same for data and MC
- $\rho_{E\theta}$ and $\rho_{E\varphi}$ have a more complicate explanation. As first guess, I set them to 0

Kinematic fit with neutrals in g12

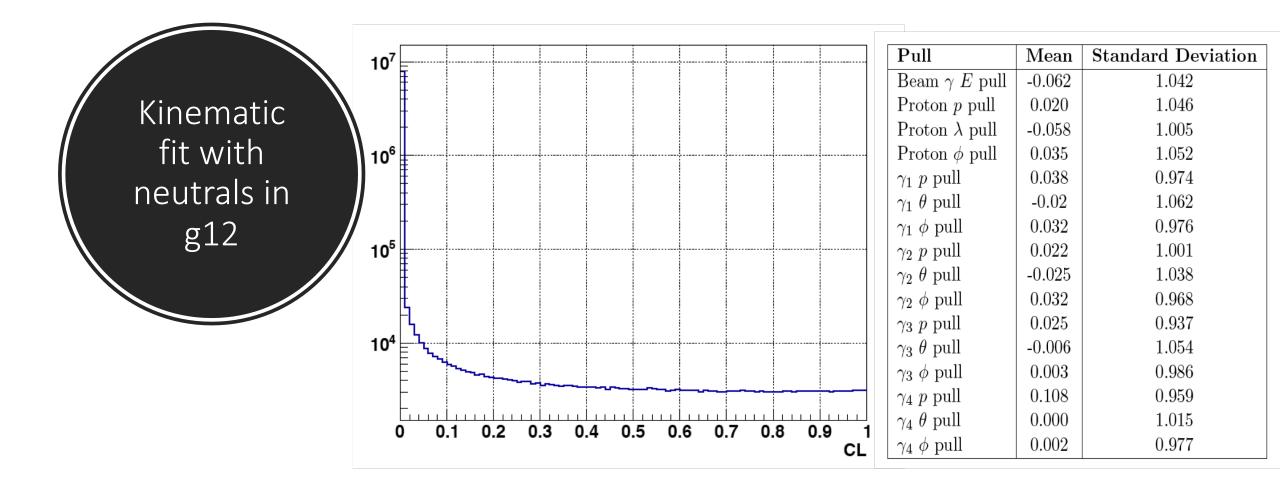
- g12 has a working package for kin. fit on reactions involving only charged particles
- I extended it to work for photons using the covariance matrix I derived.
 - Resolutions factor are over-estimated: the contribution from missing photon obtained from the kin. fit in the $\gamma p \rightarrow p\pi^0 \rightarrow pe^+e^-(\gamma)$ reaction is re-absorbed in the measured photon resolution
 - I tuned the kin. fit with neutrals on the reaction $\gamma p \rightarrow p\gamma\gamma$, introducing 3 global scale factors for the resolution
 - Best configuration is that providing the smallest normalized CL slope in the range (0.5-1)

Best configuration found for: (normalized slope: 3.3 10⁻⁵)

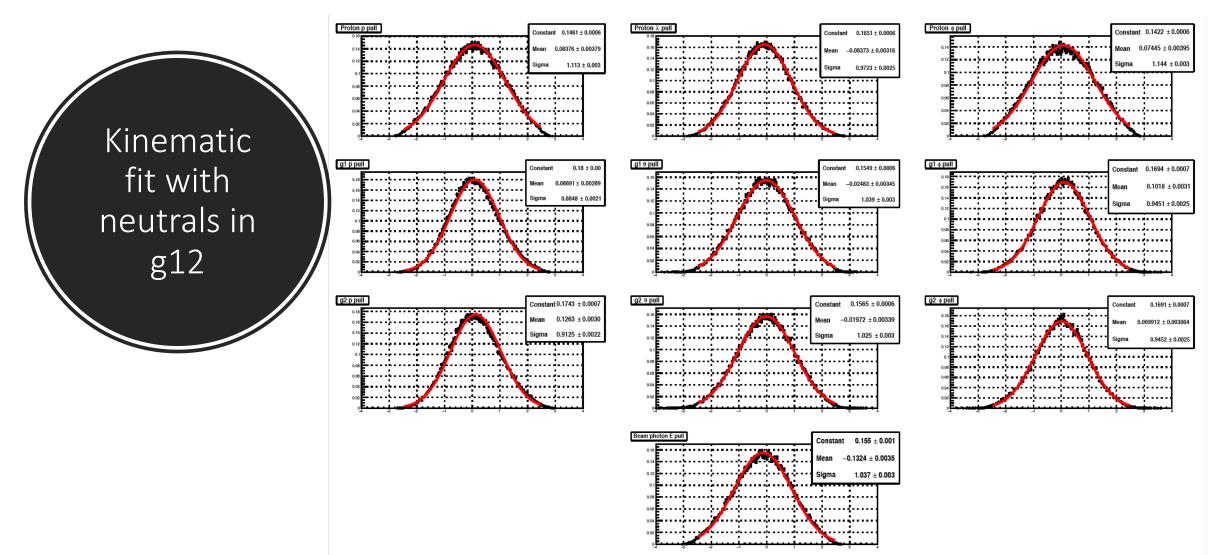

$$\sigma_E^{corr} = 0.825 \cdot \sigma_E$$
$$\sigma_\theta^{corr} = 0.8 \cdot \sigma_\theta$$
$$\sigma_\phi^{corr} = 0.8 \cdot \sigma_\phi$$

Kinematic fit with neutrals in g12

- g12 has a working package for kin. fit on reactions involving only charged particles
- I extended it to work for photons using the covariance matrix I derived.
 - Resolutions factor are over-estimated: the contribution from missing photon obtained from the kin. fit in the $\gamma p \rightarrow p\pi^0 \rightarrow pe^+e^-(\gamma)$ reaction is re-absorbed in the measured photon resolution
 - I tuned the kin. fit with neutrals on the reaction $\gamma p \rightarrow p \gamma \gamma$, introducing 3 global scale factors for the resolution
 - Best configuration is that providing the smallest normalized CL slope in the range (0.5-1)

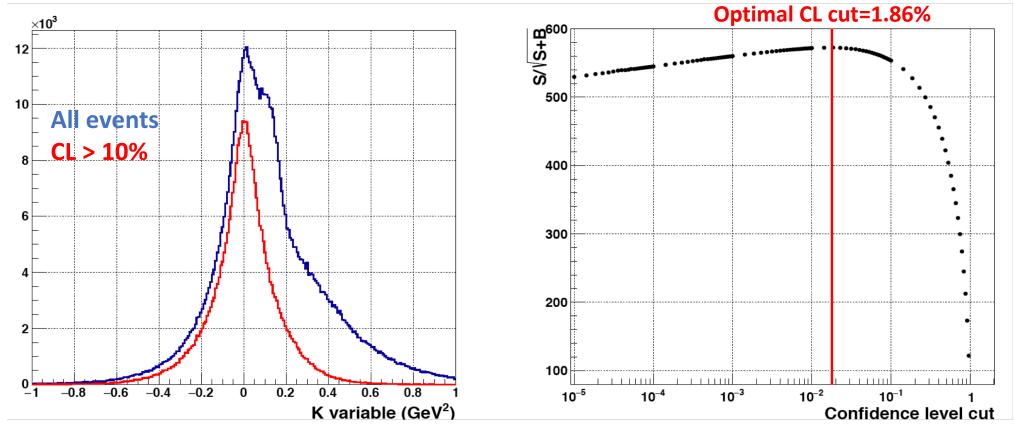

Two photons invariant mass

All events CL> 0.1, original 4-momenta CL> 0.1, corrected 4-momenta


I applied a 4C kinematic fit to $\gamma p \rightarrow p \gamma \gamma \gamma \gamma$ to select exclusive 4-photons events

- CL distribution is flat (normalized slope: 0.021)
- Pull distributions all have mean equal to zero and standard deviation equal to one

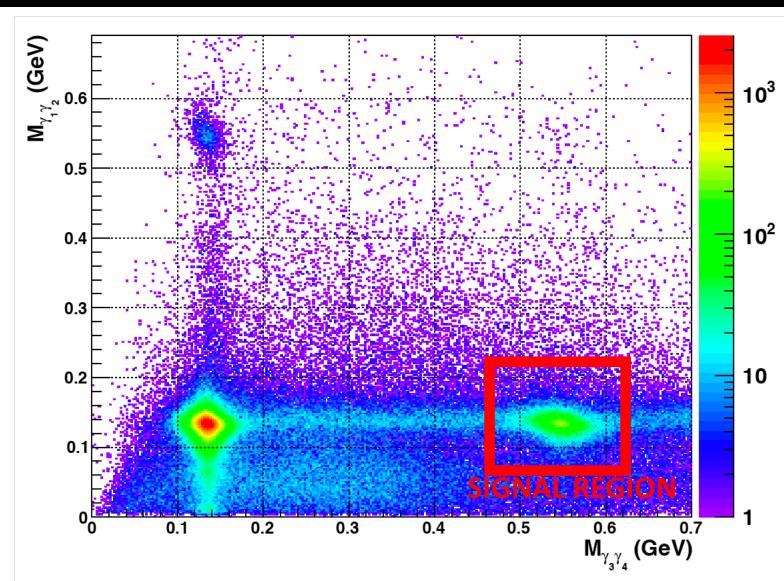
I applied a 4C kinematic fit to $\gamma p \rightarrow p \gamma \gamma \gamma \gamma$ to select exclusive 4-photons events


- CL distribution is flat (normalized slope: 0.021)
- Pull distributions all have mean equal to zero and standard deviation equal to one

Kinematic fit with neutrals in g12

CL cut optimization:

- Consider the $K = (MM_p^2 M_{4\gamma}^2)$ variable: should be 0 (>0) for exclusive (background) events
- Obtain an estimate for signal $S = 2N_{K<0}$ and background $B = N_{K>0} N_{K<0}$
- Take CL cut with highest $S/\sqrt{S+B}$ value


Reaction selection

Goal: isolate $\pi^0 \eta$ signal from final state photons.

Photon ordering: exploits the fact that, on average, opening angle between π^0 photons is smaller than that of photons from η

 $\theta_{MIN} \sim \frac{4M}{E}$

- γ₁, γ₂: photons with the smallest relative angle
- γ_3, γ_4 : others

Reaction selection with sPlot technique

Technique used to isolate events belonging to the $\gamma p \rightarrow p \pi^0 \eta$, based on the knowledge of the PDF for a "discriminating" variable (can be more than one)

Allows to determine event-by-event weight for each event source (typically signal and background)

Application to this reaction:

- Discriminating variable: $M_{\gamma_3\gamma_4}$
- Two events sources: signal / background

Full PDF

Signal PDF

Background

- Signal PDF: Gaus w exponential tails
- Background PDF: polynomial

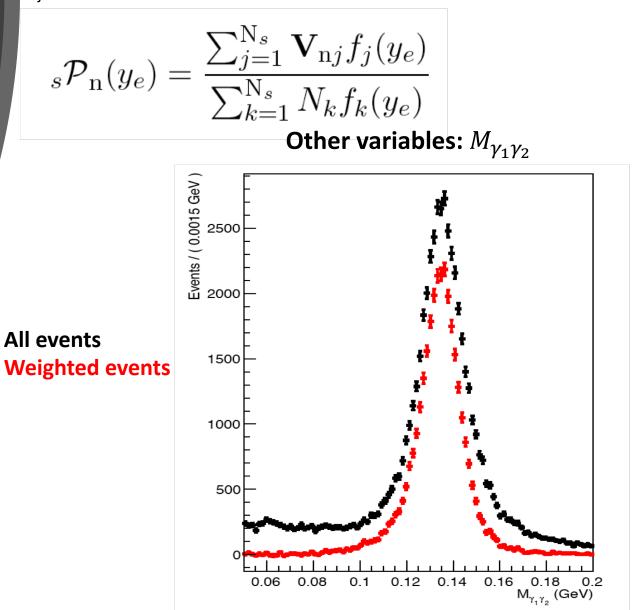
Only events with $M_{\gamma_3\gamma_4}$ in the range (0.4-0.7) GeV were considered

Event weight for source "n", among the Ns sources. f_i is the PDF for source j, evaluated at event e

$${}_{s}\mathcal{P}_{n}(y_{e}) = \frac{\sum_{j=1}^{N_{s}} V_{nj} f_{j}(y_{e})}{\sum_{k=1}^{N_{s}} N_{k} f_{k}(y_{e})}$$
Discriminating variable
$$\int_{1500}^{\sqrt{9}} 2500 \int_{1500}^{1} \frac{1}{1500} \int_$$

Reaction selection with sPlot technique

Technique used to isolate events belonging to the $\gamma p \rightarrow p \pi^0 \eta$, based on the knowledge of the PDF for a "discriminating" variable (can be more than one)


Allows to determine event-by-event weight for each event source (typically signal and background)

Application to this reaction:

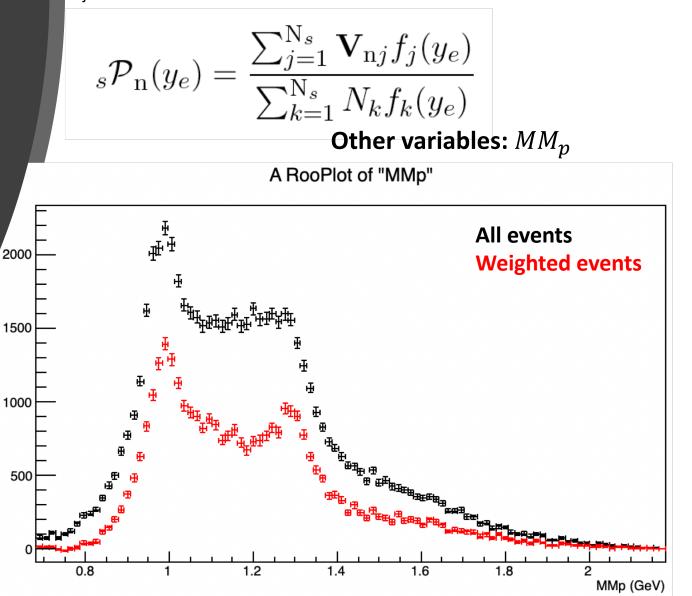
- Discriminating variable: $M_{\gamma_3\gamma_4}$
- Two events sources: signal / background
- Signal PDF: Gaus w exponential tails
- Background PDF: polynomial

Only events with $M_{\gamma_3\gamma_4}$ in the range (0.4-0.7) GeV were considered

Event weight for source "n", among the Ns sources. f_i is the PDF for source j, evaluated at event e

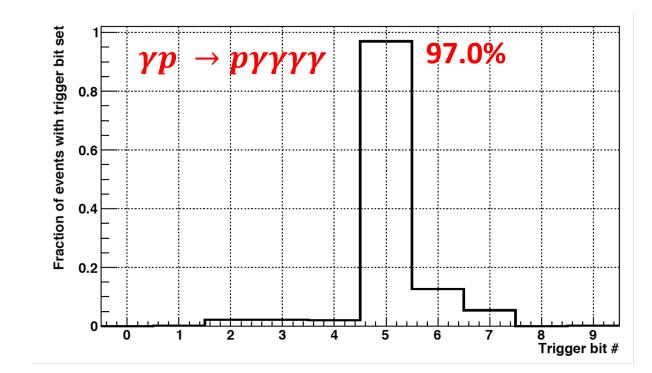
Reaction selection with sPlot technique

Technique used to isolate events belonging to the $\gamma p \rightarrow p \pi^0 \eta$, based on the knowledge of the PDF for a "discriminating" variable (can be more than one)


Allows to determine event-by-event weight for each event source (typically signal and background)

Application to this reaction:

- Discriminating variable: $M_{\gamma_3\gamma_4}$
- Two events sources: signal / background
- Signal PDF: Gaus w exponential tails
- Background PDF: polynomial


Only events with $M_{\gamma_3\gamma_4}$ in the range (0.4-0.7) GeV were considered

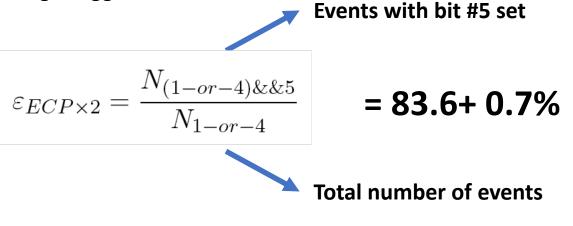
Event weight for source "n", among the Ns sources. f_i is the PDF for source j, evaluated at event *e*

- G12 used a trigger scheme with multiple parallel trigger conditions
 - FPGA based (v1495)
- Limited information is stored in the trigger bank
- Trigger bit #5: (ST*TOF)*(ECP>2)
 - ECP: EM cluster in EC, threshold applied to analogue sum of PMT signals
 - Tailored to neutral final states

g12 runs 56595–56607, 56648–57323				
Bit	Definition	L2 multiplicity ^a	Prescale	
1	$MORA \cdot (ST \times TOF)$	1	1000/300	
2	$\texttt{MORA} \cdot (\texttt{ST} imes \texttt{TOF}) imes 2$	$2/-^{c}$	1	
3	$\texttt{MORB} \cdot (\texttt{ST} \times \texttt{TOF}) \times 2$	2	1	
4	ST×TOF	1	1000/300	
5	$(\mathtt{ST} \times \mathtt{TOF}) \cdot \mathtt{ECP} \times 2$	1	1	
6	$(\mathtt{ST} \times \mathtt{TOF}) \cdot (\mathtt{EC} \times \mathtt{CC})$	2	1	
$\overline{7}$	$MORA \cdot (ST \times TOF) \cdot (EC \times CC)$	—	1	
8	$MORA \cdot (ST \times TOF) \times 2$	—	1	
11	$(EC \times CC) \times 2$	—	1	
12	$(\mathtt{ST} \times \mathtt{TOF}) \times 3$	—	1	

Is the latching system reliable?

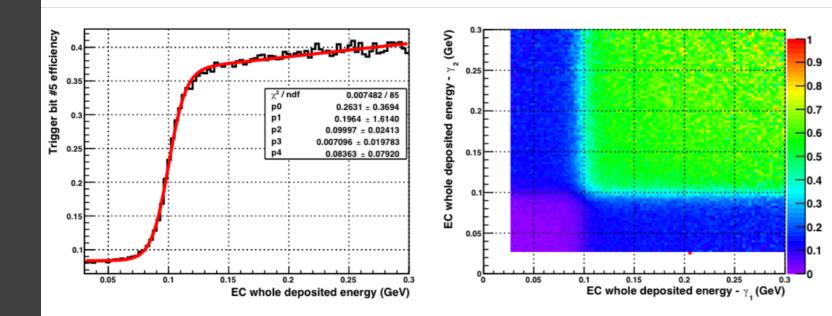
-	g12 runs 56595–56	,	
Bit	Definition	L2 multiplicity ^a	Prescale
1	$MORA \cdot (ST \times TOF)$	1	1000/300
2	$\texttt{MORA}{\cdot}(\texttt{ST}{\times}\texttt{TOF}){\times}2$	$2/-^{c}$	1
3	$\texttt{MORB}{\cdot}(\texttt{ST}{\times}\texttt{TOF}){\times}2$	2	1
4	ST×TOF	1	1000/300
5	$(\texttt{ST} \times \texttt{TOF}) \cdot \texttt{ECP} \times 2$	1	1
6	$(ST \times TOF) \cdot (EC \times CC)$	2	1
$\overline{7}$	$MORA \cdot (ST \times TOF) \cdot (EC \times CC)$	—	1
8	$MORA \cdot (ST \times TOF) \times 2$	—	1
11	$(EC \times CC) \times 2$	—	1
12	$(ST \times TOF) \times 3$	_	1


Events with beam photon in the MORA range, with trigger bit 2 AND 12 set $r = \frac{N_2^{12, \text{ MORA}}}{N_{all}^{12, \text{ MORA}}} = 98.5\%$ Events with beam photon in the MORA range, with trigger bit 12 set

(Test performed for runs after bit2 L2 was removed)

- Is the latching system reliable?
- What is the efficiency of bit #5?
 - This may be topologydependent, so I evaluated it directly on the final state of interest.

	$g12 { m runs} 56595{-}56$	607, 56648 - 57323	
Bit	Definition	L2 multiplicity ^a	Prescale
1	$MORA \cdot (ST \times TOF)$	1	1000/300
2	$\texttt{MORA} \cdot (\texttt{ST} imes \texttt{TOF}) imes 2$	$2/-^{c}$	1
3	$\texttt{MORB} \cdot (\texttt{ST} \times \texttt{TOF}) \times 2$	2	1
4	ST×TOF	1	1000/300
5	$(\texttt{ST} \times \texttt{TOF}) \cdot \texttt{ECP} \times 2$	1	1
6	$(ST \times TOF) \cdot (EC \times CC)$	2	1
$\overline{7}$	$MORA \cdot (ST \times TOF) \cdot (EC \times CC)$	—	1
8	$MORA \cdot (ST \times TOF) \times 2$	—	1
11	$(EC \times CC) \times 2$	—	1
12	$(ST \times TOF) \times 3$	_	1

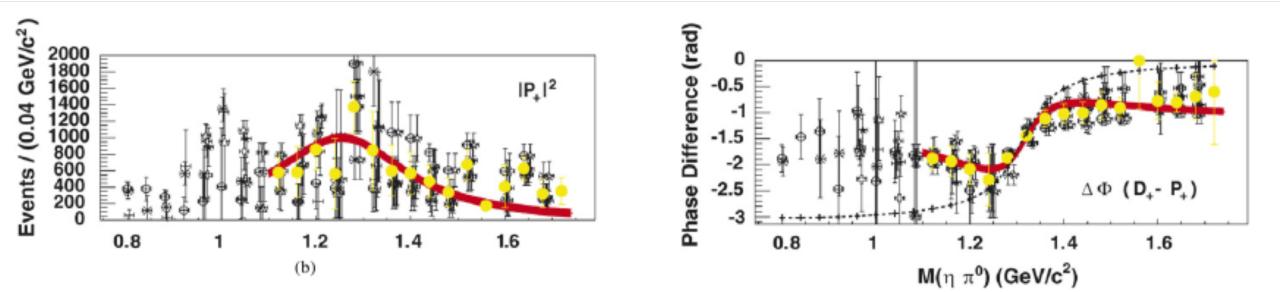

Select events with trigger bit 1 or 4 set, having at least two photons in different EC sectors, both with large (>1 GeV) energy. These should satisfy by design trigger bit 5.

- Is the latching system reliable?
- What is the efficiency of bit #5?
 - This may be topologydependent, so I evaluated it directly on the final state of interest.
- What is the effective trigger threshold?

g12 runs 56595–56607, 56648–57323				
Bit	Definition	L2 multiplicity ^a	Prescale	
1	$MORA \cdot (ST \times TOF)$	1	1000/300	
2	$MORA \cdot (ST \times TOF) \times 2$	$2/-^{c}$	1	
3	$MORB \cdot (ST \times TOF) \times 2$	2	1	
4	ST×TOF	1	1000/300	
5	$(\mathtt{ST} \times \mathtt{TOF}) \cdot \mathtt{ECP} \times 2$	1	1	
6	$(\mathtt{ST} \times \mathtt{TOF}) \cdot (\mathtt{EC} \times \mathtt{CC})$	2	1	
$\overline{7}$	$MORA \cdot (ST \times TOF) \cdot (EC \times CC)$	—	1	
8	$MORA \cdot (ST \times TOF) \times 2$	—	1	
11	$(\texttt{EC}{ imes}\texttt{CC}){ imes}2$	—	1	
12	$(\mathtt{ST}{ imes}\mathtt{TOF}){ imes}3$	—	1	

Select events with trigger bit 1 or 4 set, having at least two photons in different EC sectors. Study the trigger efficiency as a function of the EC deposited energy.

- Is the latching system reliable?
- What is the efficiency of bit #5?
 - This may be topologydependent, so I evaluated it directly on the final state of interest.
- What is the effective trigger threshold?


g12 runs 56595–56607, 56648–57323				
Bit	Definition	L2 multiplicity ^a	Prescale	
1	$MORA \cdot (ST \times TOF)$	1	1000/300	
2	$\texttt{MORA}{\cdot}(\texttt{ST}{\times}\texttt{TOF}){\times}2$	$2/-^{c}$	1	
3	$\texttt{MORB}{\cdot}(\texttt{ST}{\times}\texttt{TOF}){\times}2$	2	1	
4	ST×TOF	1	1000/300	
5	$(\texttt{ST} \times \texttt{TOF}) \cdot \texttt{ECP} \times 2$	1	1	
6	$(ST \times TOF) \cdot (EC \times CC)$	2	1	
7	$MORA \cdot (ST \times TOF) \cdot (EC \times CC)$	—	1	
8	$MORA \cdot (ST \times TOF) \times 2$	—	1	
11	$(EC \times CC) \times 2$	—	1	
12	$(ST \times TOF) \times 3$	_	1	

Select events with trigger bit 1 or 4 set, having at least two photons in different EC sectors. Study the trigger efficiency as a function of the EC deposited energy.

Sector	EC-whole		EC-inner	
	E_c	k	E_c	k
1	$98.6 { m MeV}$	$6.2 { m MeV}$	$75.9 { m MeV}$	$16 { m MeV}$
2	$97.6 { m MeV}$	$6.3 { m MeV}$	$74.0 { m MeV}$	$15.9 { m MeV}$
3	$98.4 { m MeV}$	$5.3 { m MeV}$	$74.1 { m MeV}$	13.8 MeV
4	$107.5 { m MeV}$	$6.4 { m MeV}$	$81.0 { m MeV}$	$15.0 { m MeV}$
5	$89.1 { m MeV}$	$10.2 { m MeV}$	$63.3 { m MeV}$	$15.1 { m MeV}$
6	$101.0 { m MeV}$	$6.0 { m MeV}$	$78.9 { m MeV}$	$15.3 { m MeV}$

Conclusions

- I identified an exclusive set of ~ 30k events for the reaction $\gamma p \rightarrow p\pi^0 \eta$ from the g12 dataset. The analysis exploited the official g12 procedure, plus methods specific to this channel:
 - EC-corrections
 - Kinematic fit (specifically tuned for neutrals)
 - Sweight
- Trigger efficiency has been worked out
- Next steps:
 - Acceptance evaluation trough eML fits ("a la M. Williams")
 - PWA

