DE LA RECHERCHE À L'INDUSTRIE

Tracking and Alignment status Central Vertex Tracker

On behalf of the CVT team: -Francesco Bossu -Maxime Defurne - Yuri Gotra - Jerry Gilfoyle - Veronique Ziegler

- Marouen Baalouch

www.cea.fr

- B field: 5T solenoid field
- Two technologies:
 - Silicon strip detector: SVT
 - Micromegas tiles: BMT
- Expected performance:
 - 5% resolution on momentum at 1GeV/c
 - 5 mrad in azimuthal angle.
 - 5 mrad in polar angle.
 - vx and vy resolution at 500 um.
- Central Time-of-flight completes the tracker for particle identification.

- Barrel Micromegas tracker is made of 6 single layers with radii from 140 mm to 225 mm.
- Each layer is made of 3 tiles covering approximately 120 degrees each.
- There are two kind of tiles for the azimuthal ("Z") and polar ("C") angle.
- Z-tiles have a constant pitch of about 500 um.
 C-tiles have a varying pitch from 330 to 600um.
- The Silicon Vertex Tracker is made of three double layers.
- Four regions were made but three are currently used in CVT.
- Strips on bottom and top have a stereo angle.
- Silicon strip pitch 78um, readout pitch 156-200um
- Spatial resolution is expected to be 50um.
 CVT = A TOTAL OF 92 ELEMENTS with 3 different geometries

MVT Team

Very rare high occupancy events dramatically slow down CVT

- With cut at #hit In SVT < 1000
- Still more than 1000 crosses created
- Many events skipped, though on average ~25s/ev
- ntral XY (Event# 20) 🖻 🗃 🞯 💥 X 🥯 🖲 🍳 🚳 🖉 🦉 🥂 20 2 115 232 **disibili** 871 213 00000 872 213 00000 0.9617 11.2852 3 2203 874 214 00000 876

- Decision to implement tighter cut:
 - #svt hits < 700</p>
 - #svt cross < 1000</p>

Worst case example Run 2327: Jan 2018 I = 120 nA No tungsten foil yet

In RGB, a negligible fraction of events is above the chosen cut

SVT Occupancy is 1% for RGA and 1.5% for RGB

CEA-Saclay I

de: Yuri

- Data only approach based on Veronique's event merger code:
- Skim tracks from low luminosity run (5 nA)
- Skim Faraday cup and pulser trigger events from high luminosity (50 nA) run (no tracks)
- Filter both samples leaving only raw CVT banks
- Run event-merger
- Reconstruct output samples (same number of events):
 - 5 nA sample
 - 5 nA sample with merged background events
- Check event-by-event track matching using the cuts:
 - $\sigma_{\Delta p/p} = 10\%$, $\sigma_{\Delta \phi}$, $\sigma_{\Delta \theta} = 10$ mrad (0.57 degrees)
 - Apply N*σ cuts and calculate percentage of the tracks matched in both samples

Ν	Matched tracks, %
3	62
4	64
5	67
10	74
100	91

Yuri

- 99% of 5nA tracks are reconstructed even with high 55 nA background
- Background hits cause substantial degradation of resolution
- Due to lower track quality (loosing BST crosses)
- Mitigation:
 - change seeding algorithm to keep lost BST crosses in seed candidates
 - To be carefully validated as can increase CVT reco time
 - Assess why fits to seeds with lower NDF may give very different pars
 - Switch from BST crosses to BST clusters in seeding (requires more studies)
 - CVT alignment would help to select the good seeds

Ν	Matched tracks, %
3	62
4	64
5	67
10	74
100	91

Efficiency: background merging

Yuri

5 nA sample with 50 nA background merged (runs 6367, 6368, 6369)

CEA-Saclay

MVT Team

Efficiency: background merging

Yuri

5 nA sample

NDF = 8, 3 BST on-track crosses

5 nA sample with 50 nA background NDF = 2, no BST on-track crosses

CEA-Saclay

M. Baalouch

Purpose of Monte Carlo Matching

- Study and test the reconstruction.
- Helps to update the reconstruction algorithm (e.g. smearing the detector response to be more realistic).
- Measure efficiency.
- Measure the resolution.

M. Baalouch

Criterion of track matching based on fraction of MC hits used the reconstruction

Monte Carlo hit based matching

MVT Team

• Resolve degeneracy in x,y position of vertex

- Chi2 was not correctly assigned at the end of the Kalman fitter
- Now sharper distribution.
- It also helps in keeping the best tracks when removing clones

- Two independent approaches:
- Millepide based
- Iterative method
- Alignment data (0-field run and cosmic) currently being organized in timeperiod to extract all alignment constants up-to-now.
- CCDB tables for alignment constants in /test/mvt and /test/svt for MC and regular data.
- MVT geometry code modified to load and use alignment constants. Still in progress for SVT for the iterative method.
- To get the best out of the alignment, we need to completely validate CVT tracking code

- Track-based alignment of SVT requires many parameters up to 792.
- Program millepede does linear least squares with many parameters.
 - Matrix form of least squares method.
 - Global parameters the geometry misalignments. Same in all events.
 - Local individual track fit parameters. Change event-to-event.
 - Requires first partial derivatives of residuals with respect to the local (fit) parameters and global parameters (geometry misalignments).
- Analysis chain: red boxes Java; green boxes C ⁺⁺.

 Full chain has been tested and validated using *gemc* simulation and cosmic data for simplified case (Type 1 events – only horizontal sensors).

 Recent improvements in the CVT reconstruction have restarted the application of the millepede algorithm to more event types.

Maxime

- Step 1: Find Tx, Ty, Tz and Rx, Ry, Rz (6 parameters) to align MVT frame and SVT frame.
 => Correct for major misalignments expected between the two subsystems... Speed up convergence.
- Step 2: Exclude 1 tile or 1 module from the tracking.
 Then try to find rotations and translations to decrease residuals of the excluded elements.
 This step should be iterated until rotations and translations don't change any more.

To align one detector, you take into account the results of the detectors previously aligned.

Step 3: In step 2, both layers of a SVT module are moved together. But top and bottom layers can be misaligned.

Try to find one translation to align both layers.

A second iteration might be required.

- Results shown later are still preliminary. A few translations/rotations are still forbidden
 -BMT-Z tile: The translation along the z-axis is forbidden because in the direction of the strips.
 -BMT-C tile: The rotation along the beam axis is forbidden for same reasons.
 -SVT module: The translation along the z-axis is forbidden as well (but we will come back later on this point).
- Advantage: Easy to implement.
 Drawback: Time needed for convergence depends on the sequence in aligning the detectors.

Result BMT with cosmics

mean 0.000

sigma 0.159

0.40

0.40

0.40

mean 0.020

sigma 0.197

0.40

0.40

mean 0.013

sigma 0.200

mean 0.014

sigma 0.143

mean -0.011

sigma 0.162

Residuals for C-tile L1 S3 in mm

-0.00

Residuals for C-tile L2 S3 in mm

-0.00

Residuals for C-tile L3 S3 in mm

-0.00

Residuals for Z-tile L1 S3 in mm

-0.00 0.20

Residuals for Z-tile L2 S3 in mm

-0.00

0.20

0.20

0.20

0.20

-0.20

-0.20

-0.20

-0.20

-0.20

-0.40

-0.00

0.20

0.40

-0.40

-0.20 -0.00 0.20

0.40

-0.40

-0.20

-0.00 0.20

-0.20

120

100

60

-0.40

0.40

-0.40

-0.20

-0.00

0.20

0.40

-0.40

-0.20

-0.00

0.20

0.40

18

Result SVT with cosmics

Vertexing improved as well

2500 2000

mean -3.028 sigma 0.721

25

25

Beam position in CVT frame Not the lab frame.

Before Alignment	
X-position	-3.173 +/- 0.992
Y-position	2.097 +/- 0.971
Upstream-z	-26.589 +/- 2.282
Downstream-z	23.686 +/- 2.578

X-vertex

After alignment	
X-position	-3.028 +/- 0.721
Y-position	1.661 +/- 0.757
Upstream-z	-29.702 +/- 2.296
Downstream-z	20.438 +/- 2.258

Target position quite sensitive to misalignment.

CEA-Saclay

⁸⁰

- Alignment precision down to 10um. A challenge is to compute the intersection between helical track and tilted/displaced SVT and MVT with a 1um accuracy (especially for SVT)... Keeping a reasonable computation time.
- The helix is paramterized by the curvilinear abscissa.
- Step 1 : Find the abscissa s_i for the intersection between the Helix and the ideal detector.

Step 2: The squared distance between Helix points at abscissa s to the cylinder has a parabolic shape close to the intersection a*s^2+b*s+c. With the squared distances of points at s_i, s_i-epsilon and s_i+epsilon (**In the det frame this time!**), we extract a, b and c. A better estimate of the intersection is then given at -b/2a.

Step 3: Iterate step 2 with updated s_i at -b/2a and epsilon=|s_i-(-b/2a)|/10. (epsilon is initialized to 1 cm).

• Convergence within 3 iterations to reach the um-accuracy. No speed loss. Same strategy will be applied to SVT.

Maxime

- Example for BMT
- D^2 as function of s (m).
- Particle from 0;0;0, with Pt=0.5 GeV, theta=50deg.
- Rotation by 10 deg, translation up to 5mm in x.
- Converge in 3 iterations

• Similar approach for intersection with SVT

MVT Team

• Thanks to all the "CVT team" for the work done so far

Extensive effort to get CVT tracking ready for pass 1

- Validation of track fitting and geometry
- Handling of misalignments in code is almost ready to be validated
- Alignment runs and cosmics data have decoded and ready to be processed Storage and reading of rotations and translations tables both for SVT and MVT is in place
- Test possible solutions to maximise the SVT crosses used
- Use of MC hit-base matching to properly evaluate efficiencies and resolutions

Longer time scale:

- Seeding: move from crosses to clusters
- MC hit-base matching implementation in Java
- Cross validation between the two alignment methods

- In this alignment study, all Tile/Module are attached to a frame in which you know absolutely the position of the detector. The frame is chosen to be the ideal x-y-z lab frame. In ideal situation,
- MVT frame: Frame in which all the tiles should be aligned with each other.
- SVT frame: Frame in which all modules are aligned with each other.
- In ideal, SVT frame = MVT frame.
 In reality, misalignment between both.
 => Main misalignments due to MVT versus SVT position.
- Beam rays are tracks collected during an alignment run at field B=0,
- Cosmic rays were also collected. They provide correlations between the sectors of CVT, whereas beam rays are going only through one sector.
- For this reason, the code must run on cosmic and beam rays simultaneously.

