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Jefferson Lab Tritium Target Performance 

• Brief History

• Target Performance

－Performance as a system

• Containment/Confinement

• Operations

－Target/beam performance

• Summary
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Long Long Ago…

How did the T2 Program get it’s start?
• Talks began in late 1990s

－NO WAY Tritium always makes a mess

• First formal proposal made in 2006 (MARATHON)

－Experiment was approved with conditions on the target

“Its All About the Target”

Roy Holt -> Can we use a bit of T2 gas in a safe sealed

small volume and perform the experiment?

• YES!

• Concept Review in 2010 “This could work”

－Grew to 5 Experiments

• Final Design Review in 2015

• First Beam: December 2017
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Experimental Program

• E12-10-103   MARATHON: Deep Inelastic Scattering F2n/F2p

－Petratos, Arriington, Gomez, Kratramatou, Meekins, Ronsome, Holt 
(Ret)

• E12-11-112: Isospin structure of 2N-SRCs (JLab)

－P. Solvignon*, J. Arrington, D. Day, D. Higinbotham

• E12‐14‐011:  p/n Momentum Distributions in A = 3

－Boeglin, Gilad, Hen, Weinstein

• E12‐14‐009: Elastic scattering; charge radii

－L. Meyers, J. Arrington, D. Higinbotham

• E12-17-003: Hyper-nuclear

－Nakamora, Markowitz, Garibaldi, Urciuoli, Tang

Jefferson Lab Tritium Target Performance 4

* In Memorium



Tritium Target Safety

• Safety of public, personnel and environment is paramount

－Minimize impact from any release scenario

• Responsible Engineer: Legally responsible for safe design, fabrication, 
inspection and testing. Ensure all applicable Codes and Standards 
have been met.

• Three layers of containment/confinement at all times

－Shipping and handling

－Loading

－Installation/removal

－Storage

• Controls

－Engineering, Admin, PPE, Avoidance

• During operations the experimental Hall walls became the 3rd layer of 
confinement.

－Special exhaust systems were constructed

• Custom Storage was developed
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Selected Applicable Codes and Standards
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10 CFR 851 (DOE worker safety and health)
10 CFR 71
10 CFR 20
49 CFR 172 and 173 (DOT HAZMAT)
NEPA National Environmental Policy Act
DOE Orders: 460.1, 441.1, 458.1
DOE Office of Science Policies
DOE NNSA Packaging, Shipping, Filling, 
Handling, Security
DHS/DOE NMCA
SRS safety basis
JLAB pressure safety and RadCon
JLAB ERRs
Codes: 

ASME BPVC VIII D1 and D2 and IX, B31.3, 
STC-1
AWS D1.1 and 1.6



Sealed Static Gas Cell
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Target Fluids:

Why would you want 

anything but tritium?
• Load ~ 1100 Ci of T2 (0.11 g)

• Fill pressure ~ 200 psi at 295K

• Volume = 33.4 cc

• Walls ~0.5 mm thick

• Ends ~0.25 mm thick

Successful Modular Design:
-Can ship in BTSP – ovoid JLAB “handling” T2
-Store in triple containment 
-Install when needed 
-Stayed removable covers allowed thin walled cell to meet         
SRS/safety basis and experimental requirements 



Sealed Gas Cell
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Tritium (T2)
He-3

D2
H2

Empty
Solid Targets

Internal Target Assembly

Heat 
Exchanger



Tritium Loss from Cell
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𝑄 =
𝜒𝐶𝐷𝐴

𝑡

𝐶 =
𝐶0 𝑃𝑜𝑝

𝑃𝑎𝑡𝑚
𝑒−

Δ𝐻
𝑅𝑇

𝜒 = 𝑚𝑜𝑙𝑎𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝐶0 = 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑇2 𝑖𝑛 7075 𝑎𝑡 𝑆𝑇𝑃
𝐷 = 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓 𝑓𝑜𝑟 𝑇2 𝑖𝑛 7075
Δ𝐻 = ℎ𝑒𝑎𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝐴 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
𝑡 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠

Molar T2 loss

Solubility of T2 in 
7075

Tritium(Hydrogen) Permeates 
Through Cell

• 𝑇2 → 𝑇 + 𝑇 hops through lattice 
interstitial sites

• Conservative scaled estimates for 
unknowns based on H2 data

Gives a loss of T2 as 0.5 Ci/year



Tritium Loss From Cell

• Stack monitor measured T2 loss

－Loss above background ~2µµCi/cc

－~11 mCi/month or <150 mCi which exceeds design  
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Target Installed

Stack monitor
(µµCi/cc-s)



Tritium Loss From Cell

• Loss measurements scale with target temperature as expected

－Confident in measurements/model
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Exhaust System/Confinement

• Provided crucial 3rd layer of confinement/containment

－Design requirements: 

• maintain slight negative pressure in Hall A (1–2 inH20) and in handling 
hut (2-3 inH2O)

• 140 ft/s at chamber with hut installed LAMINAR

• Loads balanced with dampers and were concurrent

• Provide Smoke Removal

－Required to operate in combination with other exhausts in Hall to 
remove smoke from fire

• System must not damage the roll up door in the Hall.

－High suction can pull this door off tracks

• Exhaust fan speed variable

－Pressure drops and flow rates must be balanced
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Exhaust System/Confinement
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Transfer Hut

Target Exhaust System and Stack



Exhaust System/Confinement

• Exhaust system was certified by team from SRS/SRTE

• Smoke removal capacity exceeded 12000 cfm

• Tritium operations:

－Laminar flow velocity ~160 ft/s at chamber for loading

－Pressures in Hall and chamber ~-1.5 and -3 inH2O

• Fan speed was tweeked by 5% to optimize the performance

• System operated with 100% reliability in all modes
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First Beam 15 December 2017
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Background from Cell Endcaps
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Sheren Alsalmi: Kent State

Sweet spotThey gave us T2



Target Performance Density Reduction
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Sheren Alsalmi: Kent State

CFD: ~15% 
reduction



Tritium Gas Targets at Electron Accelerators
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Lab Year Quantity

(kCi)

Thickness

(g/cm2)

Current

(mmA)

Current  x 
thickness

(mA-
g/cm2)

Stanford 1963 25 0.8 0.5 0.4

MIT-Bates 1982 180 0.3 20 6.0

Saskatoon 1985 3 0.02 30 0.6

JLab 2017-
2018

1.1 0.072 22.5 1.62

JLAB Target Stands up Well With Other Targets



Hydrogen Contamination in Second Cell
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H2 contamination

Shujie Li - UNH

• Few % H2 contamination 
in the second cell

• Working with SRS to 
quantify this 
contamination



Graduate Students and Post-Docs

• *S. Alsalmi

• J. Bane 

• J. Castellanos 

• R. Cruz-Torres

• H. Dai

• T. Hague

• T.Kutz

• S. Li

• H. Liu

• M. Nycz

• *D. Nguyen

• B. Pandey

• S. N. Santiesteban

• T. Su

• Kosuke
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• F. Hauenstein

• R. E. McClellani

• A. Schmidt

• Z. Ye

13 PhD Students
2 Grad Student Model Citizens
4 Post-Docs



Summary

• Jefferson Lab has completed the Tritium Program

－13+ PhD Students 

－4+ experiments completed (2 high impact)

• Staff and T2 Community collaborated effectively to address 
special hazards with T2

• Preliminary results are promising

－Publications are expected soon.

• Target performed as expected

－No significant loss of T2

－Roy’s idea worked

• Best measure of success: I still have a job at JLAB
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- After long period at operating temperature, warm-up causes initial spike in 

exhaust stack tritium concentration –

- Hypothesis; 3H “condenses” on target cell surface, causes puff on warm-up

Stack monitor alarm thresh

Vac exhaust stack monitor

Tritium “puff” from target 

warm up 

Experience with T2 Target



A C

B

D Continuous Electron Beam

• Energy 0.4 ─ 6.0 GeV

• 200 mA, polarization 85%

• 3 x 499 MHz operation

• Simultaneous delivery 3 halls

JLab accelerator CEBAF

• 416 PhDs completed

• On average 22 US PhDs per 

year, close to 30% of US PhDs 

in nuclear physics

• On average 50 undergrads per 

year involved in research at 

Jefferson Lab

• 1385 users in FY12, 

anticipated to grow to ~1500+ 

users with 12-GeV operations

• International: non-US 

nuclear physics users = 1/3 of 

total, from 33 countries



Current neutron to proton structure function ratio

Argonne National Laboratory 25

C. D. Roberts, RJH, S. Schmidt, PLB 727(2013) 249;
RJH, C. D. Roberts, RMP 82 (2010) 2991 
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• Mirror symmetry of A=3 nuclei

– Extract F2
n/F2

p from ratio of measured 
3He/3H structure functions

R = Ratio of “EMC ratios” for 3He and 3H

Relies only on difference in nuclear effects

calculated to within 1.5% 

Spokespersons: G. Petatos, R. Holt, R. Ransome, J. Gomez



• Four Experiments Have Been Proposed To Use 3H & 3He  

• Elastic Scattering 3He/3H Ratios  (one experiment)

• Make use of our 3He knowledge to better constrain the radius of 3H 

• Test of modern two- and three-nucleon potentials

• Quasi-Elastic Knock-Out (E12-11-112)

• Distribution of the momentum of the proton(s) in 3H vs. 3He via (e,e’p)

• Extreme Kinematics with (e,e’) to probe short-range correlations 

• Deep Inelastic Scattering (one experiment)

• Ratios of Deep Inelasltic Structure Functions 

• Learning about the Quark Properties of Proton & Neutron

• Taken together, the elastic and quasi-elastic results will help constrain the 
nuclear corrections for the deep inelastic experiment and thus ensure the 
best possible extraction of the quark u/d ratios.



F2
n
/F2

p
, d/u ratios and A1 for x→1

F2
n/F2

p d/u A1
n A1

p

SU(6) 2/3 1/2 0 5/9

Diquark/Feynman 1/4 0 1 1

Quark Model/Isgur 1/4 0 1 1

Perturbative QCD 3/7 1/5 1 1

Dyson-Schwinger 0.49 0.28 0.17 0.59

C. D. Roberts, RJH, S. Schmidt, PLB 727 (2014) 249



Present status: Neutron to proton structure function ratio

Argonne National Laboratory

29

C. D. Roberts, RJH, S. Schmidt, PLB 727(2013) 249;
RJH, C. D. Roberts, RMP 82 (2010) 2991 



Argonne National Laboratory
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3He/3H is simplest asymmetric case:

   

s 3H
/3

s 3He
/3

=
(2pn +1nn) /3

(2pn +1pp) /3
=1.0

Simple estimates for 2N-SRC

Isospin independent Full n-p dominance (no T=1)

 40% difference between full isosinglet dominance and isospin independent

 Few body calculations [M. Sargisan, Wiringa/Peiper (GFMC)] predict n-p 

dominance, but with sizeable contribution from T=1 pairs

 Goal is to measure 3He/3H ratio in 2N-SRC region with 1.5% precision

 Extract R(T=1/T=0) with uncertainty of 3.8%

Extract R(T=1/T=0) with factor of 

two improvement over previous 

triple-coincidence, smaller FSI

Isospin structure of 2N-SRCs (JLab E12-11-112)

P. Solvignon, J. Arrington, D. Day, D. Higinbotham



Exhaust stacks

• Large volume vent stack has two 

operational modes

– Target handling with containment tent in 

place – directly ventilates the tent and 

target chamber (~1000 cfm)

– Emergency ventilation of Hall in event of 

alarm or manual actuation (~7200 cfm)

• Target chamber exhaust purge stack

– Constant forced purge of vacuum 

exhaust (~5 cfm)

Engineered Controls



3He(e,e’p)/3H(e,e’p)

arXiv:1409.1717

JLab  E12-14-011 Proton and Neutron Momentum Distributions in A = 3 Asymmetric Nuclei 

32

3He/3H ratio for proton 
knockout yields n/p ratio 
in 3H

np-dominance at high-Pm

implies n/p ratio  1

n/p at low Pm enhanced

No neutron detection 
required

L. Weinstein, O.Hen, 
W. Boeglin, S. Gilad
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Charge radii: 3He and 3H

With new tritium target  ->  improve precision on DRRMS by 
factor 3-5 over SACLAY results

First opportunity for 3H at JLab (E12-14-009)          
Precise theoretical calculations of <r2

rms>3H, <r2
rms>3He

Experimental results:  large uncertainties, discrepancies

<r2
rms>3H <r2

rms>3He

GFMC 1.77(1) 1.97(1)

EFT 1.756(6) 1.962(4)

SACLAY 1.76(9) 1.96(3)

BATES 1.68(3) 1.87(3)

Atomic -------- 1.959(4)

DRRMS = 0.20(10)

DRRMS = 0.19(04)

L. Meyers, J. Arrington, D. Higinbotham



How to probe the nucleons / quarks?
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•Scattering  experiments with 
high momentum electrons use 
electromagnetic interactions, 
which are well understood, to 
probe hadronic structure 
(which isn’t). 

High energy electrons are a great tool for 
the job!

E12‐14‐011



Materials 3
• Tritium and Hydrogen Compatibility

• Extensive experience with H2
• Beam induced corrosion not expected below 180K (Flower et. al.)
• Beam assisted embrittlement

• 𝑇2 → 𝑇 + 𝑇 Increases fugacity
• Atomic tritium recombines rapidly

• Modeled room fugacity ~3100 psi
• Below threshold for H2 embrittlement
• Many orders of magnitude below He-3 swelling threshold (Louthan)

• Test SRNL/SRTE using precracked coupons exposed to 2500 
psi T2 underway

• Test followed ASTM 1820 G168 (Precracked Stress Corrosion 
Testing) 

• Samples exposed for 4, 8, 12 months
• M. Morgan, A. Duncan (SRNL)

• Tritium is expected to permeate through the cell and seals
• ~0.5 Ci /year  very conservative

• Calculations given in TGT-CALC-103-010
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Tritium To JLAB
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Tritium is
HAZMAT
Radio Active Material
Nuclear Material (NNSA)
Pressurized Gas

Shipping Is not Easy

Regulators:
• USDOE OS
• USDOE NNSA
• NRC
• DOT

BTSP 
Was almost ready for our config



Installation and Removal
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Beam Heating in the Cell
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𝐼𝑏𝑒𝑎𝑚 = 20𝜇𝐴 Max beam current
𝐴𝑟𝑎𝑠𝑡𝑒𝑟 = 2𝑥2𝑚𝑚2 min raster

3W in Entrance
3.3 W in Exit
𝑇𝑚𝑎𝑥 = 125𝐾 on exit
𝑇𝑚𝑎𝑥 = 120𝐾 on entrance



Other Beam Effects
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Beam trips ~15 times / hour
Significant cyclic load. ASME BPVC VIII D2 Part 5 analysis limits 

lifetime in beam
Raster Off does not “break” the cell



Hall A Tritium Target
Part 1

Dave Meekins

September 15, 2015
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Overview

• Part 1: Target Design
• Introduction

• Target system design
• Cell Design

• Vacuum System

• Exhaust system

• Beamline Alterations

• Control system

• Expected Performance

• Part 2:  Safety systems and failure modes
• Tritium detection and monitoring

• Tritium containment and release

• Response to the prior review
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Design Philosophy

• Safety
• Minimize impact from any release scenario

• Design shall be simple

• Minimize amount of tritium

• Do not “handle” tritium

• Three layers of containment
• Operations
• Installation/removal
• Transport

• Perform well enough to run physics

42



CEBAF at JLAB
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Continuous e Beam Accelerator
Pair of SRF LINACs with arcs
Delivers beam to 4 Halls

𝐸𝑚𝑎𝑥 = ~11 𝐺𝑒𝑉
𝐼𝑚𝑎𝑥 > ~150µ𝐴

Experiment located in Hall A
𝐸𝑚𝑎𝑥 = ~11 𝐺𝑒𝑉
𝐼𝑚𝑎𝑥 = 20 − 25 µ𝐴



Hall A

Dimensions:

Diameter = 175 ft
Height = ~ 60 ft
Volume 40000 𝑚2

Multiple access ports
include Truck Ramp

44

HRS: High Res Spectrometers

Target
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Arial View of Hall A



Target Chamber at Pivot

46

e Beam

Target/Chamber

Pivot (Hall center)



Target System
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• Repurposed Qweak H2 Target
• Alter existing Cryostat

• Alter internal piping
• Add two valves

• H2 Loop piping and cell 
removed

• Alter cryo piping and 
instruments

• 15 K He from ESR
• Motion in “X” and “Y” 

directions
• Control system is similar to Hall 

A cryotarget
• “New Construction” pressure 

system



Target Ladder
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Heat sink cooled by 
ESR to 40K
Stabilized by heater



Why Tritium?   A=3 Mirror Nuclei

A=3 Is Lightest Pair of Mirror (Asymmetric) Nuclei

• Proton and Neutron are same particle but in different states

－These states are Iso-spin states

• Isospin is an important construct for modeling

• Light enough for ab initio calculations now exist
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Isospin Flip of p/n

He-3 H-3



Target Cell
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Main Body and Entrance Window
ASTM B209 AL 7075-T651

Valve assy:
SST 316 and 304

1090 Ci of T2 (0.1 g)
~200 psi at 295K
25 cm long 
ID of 12.7mm
Volume = 34 cc
Aluminum CF seals



Cell Cross Section
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0.018” wall



Features

• Cell is “sealed”
• No recirculation

• JLAB does not “handle” the T2 gas

• Make Al-SST transition with CF flanges
• Many years of successful experience at JLAB

• Work well with H2, He, etc. at low temp < 1K

• Modular design
• Can be installed as the final component of the system
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Materials
• Main Body and Entrance 

• Aluminum 7075-T651 ASTM B209

• Extensive use of this allow for 15 years

• Strong, ductile, hard, non weldable

• Seals are Al 1100

• Valve assembly
• SST 304/304L Fitting

• Swagelok valve all metal bellows sealed (316L)

• Butt welded ER316L (100% VT in process and RT)
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Materials-2
• Al 7075 is unlisted

• Design basis 

• S
ut
= 72 𝑘𝑠𝑖

• 𝑆𝑦 = 61 𝑘𝑠𝑖

• 𝑆𝑎 = min
1

3
𝑆𝑢𝑡 ,

2

3
𝑆𝑦 = 24 𝑘𝑠𝑖 for tension

• = 80% of 24 ksi for shear

• = 150% OF 24 ksi bending

• Other wetted materials are SST 
• 304/304L

• 316/316L

• ER316L Filler for welds
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Materials 3
• Tritium and Hydrogen Compatibility

• Extensive experience with H2
• Beam induced corrosion not expected below 180K (Flower et. al.)
• Beam assisted embrittlement

• 𝑇2 → 𝑇 + 𝑇 Increases fugacity
• Atomic tritium recombines rapidly

• Modeled room fugacity ~3100 psi
• Below threshold for H2 embrittlement
• Many orders of magnitude below He-3 swelling threshold (Louthan)

• Test SRNL/SRTE using precracked coupons exposed to 2500 
psi T2 underway

• Test followed ASTM 1820 G168 (Precracked Stress Corrosion 
Testing) 

• Samples exposed for 4, 8, 12 months
• M. Morgan, A. Duncan (SRNL)

• Tritium is expected to permeate through the cell and seals
• ~0.5 Ci /year  very conservative

• Calculations given in TGT-CALC-103-010
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Beam Heating
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𝐼𝑏𝑒𝑎𝑚 = 20𝜇𝐴 Max beam current
𝐴𝑟𝑎𝑠𝑡𝑒𝑟 = 2𝑥2𝑚𝑚2 min raster

3W in Entrance
3.3 W in Exit
𝑇𝑚𝑎𝑥 = 125𝐾 on exit
𝑇𝑚𝑎𝑥 = 120𝐾 on entrance



Load Conditions

• At room temp
• P = 200 psi        

• At 40K  Beam Off
• Pressure = ~30 psi
• Max Temperature = 40K

• Beam On
• Pressure = 36 psi (avg temp of T2 = 53K)
• Max Temperature =  ~125K

• Cyclic loads
• Cool down/warm up operating cycles = 20
• 17800 beam trips (cycles between Beam On and Off)

• 150 days, 33% duty factor, 15 trips/hr
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Analysis
• Applicable Code ASME B31.3 (2014)

• Section 304.7.2 because of odd geometry

• Used both Hand Calculations and FEA

• Analysis conforming to ASME BPVC VIII D2 with load 
factors from B31.3 (i.e. 3 instead of 2.4 on P)

• Used cyclic screening analysis from D2
• Depth of loads do not require a fatigue analysis

• 175 psi pressure cycle (it is closer to 10 psi)

• Considers temperature cycle from 40K to 125K

• Design pressure 675 psi

• No source of overpressure

• Calculations:  TGT-CALC-103-002, 7, 8, 12, 13, 14, 
15, 17.
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Thermo-Mechanical Model-1

• Full temperature load
• Beam on at 20 µA  2x2 mm raster

• Pressure load 400 psi internal (more than 10x)

• Cooling using 40K heat sink

• Using an elastic-plastic model
• Model solves and stresses are still below allowable 

even for over conservative case

• Local plastic failure requirements met

• Analysis not required because of screening 
analysis
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Thermo-Mechanical Model-2
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Thermo-Mechanical Model-3
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Raster Off
• Initial conditions:

• Beam on full raster
• 20 microA

• Exit window is worst case
• Beam spot no raster

• 0.150 mm diameter
• Square profile

• For high energy beam this spot 
size is very conservative

• Tune shall be checked at each 
energy

• Long term operations at these 
conditions are forbidden

• Typical FSD for raster failure
• < 10 ms

• Red curve is upstream section 
temperature



Raster Off Time Dependence
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Mech Therm Model of Raster 
Off
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Commissioning Plan For Target 
Thickness

• Ensure beam profile is correct and BCM/Optics 
calibrated

• Step current 0-20 µA

• Collect data T2, H2, D2, He-3

• Collect data on Carbon

• Develop function for 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 𝐼
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Filling/Shipping
• Fill at Savannah River Tritium Enterprises SRTE

• Different load conditions
• Design pressure of 1000 psi required

• Changing this (e.g. new relief device) not realistic

• Thin sections need to be protected during 
shipping

Solution:

• Shipping covers that act as stays
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Filling Covers
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Valve Covers
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Covers on Test Cell
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FEA Covers On
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Filling Cover Analysis

• Stayed sections
• D2 Part 5 Elastic-Plastic

• Pressure load = 3000 psi

• Covers bonded on bolted surfaces

• Reaction loads Used to determine bolt loads.

• Model solved (local failure checked)

• A design pressure of 1000 psi may be 
assigned in compliance with B31.3
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Summary of Test Results
• Multiple hydrotests on components and 

assemblies

• Entrance:  Minimum burst above 2900 psi

• Main body:  Minimum burst above 3400 psi 
(0.014” section)

• Assembly with covers
• Leaked above 4000 psi (seal was damaged)

• Failed above 5500 psi
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Entrance window hydro
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Exit window hydro
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0.014” section
Failed above 
3400 psi



Vacuum System
• Scattering chamber (standard Hall A)

• 1900 liters

• Thin sections for recoil particles (0.014” aluminum)

• Two 800 l/s turbos backed by Leybold D60 Mech
pump

• NEG Pump with backing turbo and mech pumps

• Vacuum exhaust part of Tritium Exhaust System and 
is continuously purged with N2 (1 cfm)

• Isolated from upstream beamline vacuum (Be 
window)

• Remote RGA may help diagnose leaks. Serve as 
leak detector.
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SCATTERING 
CHAMBER

 

NC
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Exhaust System
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• 24” OD 20m tall Stack
• 12000 cfm blower 

multispeed
• 2” pump exhaust

• Run parallel to stack
• Stack must also serve as 

smoke removal
• Provides controlled release 

of secondary and tertiary 
containment

• Pump exhaust is 
continuous

• Blower activated:
• Manual
• Interlocks



Stack
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Exhaust Routing
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Exhaust Routing in Hall A
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General Requirements
• Collect T2 from any release inside Hall A and exhaust in a 

controlled fashion

• Exhaust point shall be 20 m above grade at site boundary

• Must serve as part of the smoke removal system (at least 
1/3 of the 36000 cfm required)

• Must have at least two modes to service hut and to 
exhaust from Hall A. (500 and 12000 cfm)

• Must stack vacuum pump exhaust
• Scattering chamber, dump line, getter system

• Makeup air comes from new louvered door at bottom of 
ramp.

• Prevents overpressure no ramp door.

• Test required for louver system

• Air from outside from smoke removal system on ramp with 
damper removed
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Transfer Hut
• Installed on purpose built platform

• Only in place for installation/removal

• Clear plastic hung from frame

• “Standard” design

• Directly attached to chamber adapter

• Air is drawn from Hall into hut then chamber and out 
exhaust system

• Air flow across opening 150 fpm ensure T2 
containment

• Design and fabrication is underway at SRTE

• Test installation and air flow in June 2016

• Makeup air 500 cfm supplied existing penetrations
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Exhaust Summary

• Exhausts secondary (vacuum chamber) and 
tertiary (Hall A) containment to 20 m stack

• Two speed
• ~500 cfm 

• 12000 cfm

• Exhaust system activated
• Vacuum switch failure (interlock)

• Truck ramp lower door (interlock)

• Manual activation (Hall and Counting House) (manual)

• Low speed activated manually for hut (manual)

• T2 monitor (interlock)
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Beamline Alterations
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• No plans to substantially alter beamline

• Upstream beamline shall be isolated by a Be window
• 0.008” thick 1” ID.
• Water cooled (3W beam power 25 µA)
• Reentrant (Resides in chamber)

• Window is 15 cm from entrance to cell

• Densimet collimator 10 cm long installed in tube upstream 
of window. (W 90% , Cu 8%, Ni 2%)

• Maintenance is possible if required.

• 12 mm thick collimator attached to cells

• Collimators should prevent steering error from affecting cell
• Last steering element is 8 m upstream and 2” radius beam pipe.



Be Isolation Window
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VACUUM SPACE
AIR

ADAPTER
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COOLING
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Be window

• 0.008” Be window
• Cooled by self contained water chiller to 

10C
• Integrated collimator Densimet



Be Window Heating
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• 30 µA
• 2x2 mm raster
• Steady state
• Chiller set to 10C



Control System
• Use EPICS (distributed I/O)

• Temperature/motion/valve control

• User Interface (UI) through EDM

• FSD on high temperature
• Uses interlocks from redundant 718s

• UI has integrated alarm handler

• EPICS data logger runs continuously

• Communications failures Alarm as well
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EPICS Controls

• Monitor various temperature and vacuum levels associated with 
the target system;

• Maintain a constant target temperature using an automatic, 
feedback-driven heater;

• Monitor and control the flow of cryogenic helium coolant to the 
target;

• Control both the vertical and horizontal motion of the target cells;

• Provide a set of alarms to alert users to off-normal target 
conditions;

• Provide a set of strip charts to track the target performance;

• Archive target performance data;

• EPICS is not used for safety or 
integrity
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Cryo-System
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• ESR 15K He for cooling
• Must return ~25K
• PID Control heater

• 40K
• Return mixed with 

bypass.
• Bypass valve on PID
• Alarms/interlocks on  

TS-5 (a/b) and TS-6 
(a/b)



Operations

• Dedicated target operator while target is cold
• 100% Shift coverage

• Target to be moved to “home” position during 
any access

• Operator responds to alarms
• Calls experts if needed

• Emergencies are handled by MCC or guards 
when machine is down.
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Performance Characteristics
• ½ life for tritium is ~12 .5 years

• 5% conversion to He-3 over 1 year run
• Conversion starts immediately
• Fill as close to run date as possible

• Fill purity 99.8% T2 +/- 0.02%

• Quantity of T2 from      𝑃𝑉 = 𝑛𝑅𝑇𝑍
• Where 𝑍 = 1.01 is the compressibility of tritium at the 

fill pressure of 200 psia.

• The uncertainties on the quantities above are:
𝛿𝑃 = 0.2 𝑝𝑠𝑖𝑎
𝛿𝑉 = 0.5 𝑐𝑚3

𝛿𝑇 = 0.025𝐾
• This gives an uncertainty of 

• 𝛿𝑛 = 1.5%

91



Density Change in Beam
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Density Model

• T2 properties derived from H2
• Viscosity, Thermal Conductivity, Heat Capacity, etc.

• Assumed a Real Gas model

• Buoyancy, convection on wall included

• Assumed fixed 2.8W from 20 µA and 2x2 mm 
raster (11 mW/mm linear power density)

• Did not correct heat load for density

• Averaged 20% reduction in density along beam 
path

93


