Small angle GDH E97-110

Nguyen Ton University of Virginia

January 30th 2019

Winter Collaboration Meeting 2019

Outline

- Experiment E97110 at Jefferson Lab:
 - Physics motivation
 - Setup
 - Analysis status:
 - Preliminary results on He³ and Neutron
 - Summary

Gerasimov-Drell-Hearn (GDH) sum rule (Q²= 0, real photons)

 $\sigma^{1/2}$, $\sigma^{3/2}$: photon absorption cross sections, with photon helicity anti-parallel or parallel to target spin.

 κ : anomalous magnetic moment

M: target's mass

Target	M (GeV)	κ	I _{GDH} (µb)
Proton	0.938	1.79	-204.8
Neutron	0.940	-1.91	-233.2
³ He	2.809	-8.38	-498.0

Generalized GDH sum rule (virtual photon, Q²>0)

• From real to virtual photon: change photon production cross section with electro-production cross section

• Or rewrite it in term of Compton scattering amplitudes (by Ji and Osborne): $S_1(Q^2)$, $S_2(Q^2)$ which are calculable in principle at all Q^2 .

$$\frac{16\alpha\pi^2}{Q^2} \int_0^1 g_1 dx = 2\alpha\pi^2 S_1$$

Chiral Perturbation Theory

Operator Production Expansion

Current data for GDH in low Q² region

Experiments:

- E94010 Hall A.
- E97110 Hall A.

Show a smooth transition from partonic to hadronic regions.

We expect a sharp change in slope at $Q^2 < 0.1 \text{ GeV}^2 \rightarrow \text{need turn over to}$ validate GDH for real photon

Hall A Experiment E97110

- Precise measurement of generalized GDH integral at 0.02<Q²<0.3 GeV².
- Inclusive experiment: ${}^{3}He(e, e')X$
- Measured polarized cross section differences.
- Continuous beam with P_e~85%. Two angles (6° and 9°).

• Polarized ³He: P_t~40%.

Spokespersons: J.P Chen, A. Deur, F. Garibaldi. Students: J. Singh, V. Sulkosky, J. Yuan, C. Peng, N. Ton

Experiment setup

0.02<Q²<0.3 GeV²

- 1st period: mis-wired septum (lowest Q² data)
- 2nd period: good septum

Kinematic plot for experiment

Preliminary Results

1. g_1 , g_2 on ³He

2. Neutron:

- First moment (Γ_1), Generalized GDH
- Spin polarizabilities (γ_0, δ_{LT})

3. ³He:

- Generalized GDH
- Spin polarizability (γ_0)

4. First period asymmetry and cross section difference results

Structure functions

Plots from V. Sulkosky

Constant energy

- Structure functions at constant Q²
- Correlated uncertainty: correlated radiative correction uncertainty + interpolation uncertainty
- Uncorrelated: everything
 else

Plots from V. Sulkosky

Neutron Results

Plots from V. Sulkosky

Additional data available (black data points): analyze the lowest Q² points (first period) (on-going)

Generalized GDH on Neutron

Preliminary result of Spin Polarizability from E97-110

New data from E97-110 show a disagreement between experimental data and χ PT theoretical predictions

Structure functions g_1 , g_2 for ³He (Quasi-elastic)

GDH sum rule for ³He: $I_{TT} (Q^2 = 0) = -498 (\mu b)$

Plots from C. Peng

 Q^2 (GeV²)

W(MeV)

W(MeV)

First period asymmetry and cross section difference

Summary

- First period analysis:
 - Extracting cross section difference for other beam energies.
 - Preliminary results on moment in 2019.
- Second period analysis.
 - Neutron results: finalizing systematics
 - He³ results: finalizing systematics
 - Neutron and He³ data soon to be published (weeks).