Probing correlations in A=3 systems using electron scattering

Nucleon-nucleon interaction

Crucial starting point for modern calculations of nuclear structure and reactions, and the properties of dense astrophysical objects such as neutron stars.

Strong nuclear force, Coulomb force, spins, magnetic moments ...

Nucleon-nucleon interaction

Crucial starting point for modern calculations of nuclear structure and reactions, and the properties of dense astrophysical objects such as neutron stars.

Strong nuclear force, Coulomb force, spins, magnetic moments ...

Residual interaction from interaction between nucleon constituents

Jefferson Lab

Take your pick!

- Hamada-Johnston Potential
- Yale-Group Potential
- Reid68 Potential
- Reid-Day Potential
- Partovi-Lomon Potential
- Paris-Group Potentials
- Stony-Brook Potential
- dTRS Super-Soft-Core Potentials
- Funabashi Potentials
- Urbana-Group Potentials
- Argonne-Group Potentials
 - ArgonneV14
 - Argonne V28
 - ArgonneV18
- Bonn-Group Potentials
 - Full-Bonn Potential
 - CD-Bonn Potential
- Padua-Group Potential
- Nijmegen-Group Potentials
 - Nijm78 Potential
 - Partial-Wave-Analysis
 - Nijm93
 - Nijml

•

- Nijmll
- Reid93 Potential

- Extended Soft-Core
- Nijmegen Optical Potentials
- Hamburg-Group Potentials
- Moscow-Group Potentials
- Budapest(IS)-Group Potential
- MIK-Group Potential
- Imaginary Potentials
- QCD-Inspired Potentials
- The Oxford Potential
- The First CHPT NN Potentials
- Sao Paulo-Group CHPT Potentials
- Munich-Group CHPT Potentials
- Idaho-Group CHPT Potentials
- Bochum-Julich-Group CHPT Potentials
 - LO Potentials
 - NLO Potentials
 - NNLO Potentials
 - NNNLO Potentials
- and more!

arXiv:nucl-th/0702078

Jefferson Lab

Reynier Cruz Torres

Short-range behavior in unconstrained

Why light nuclei?

Many of their properties can be:

- precisely measured.
- exactly calculated for a given two- and three-nucleon interaction model.

Why Tritium?

- Isospin doublet:
 - ³He is stable mirror nucleus

Previous studies and non-QE mechanisms

Minimizing non-QE mechanisms

Q² > 2 GeV² x_B > 1

Minimizing non-QE mechanisms

Reynier Cruz Torres

Further minimizing FSI: ³He/³H ratio

In PWIA:

$$\frac{d^6\sigma}{d\omega dE_p d\Omega_e d\Omega_p} = K\sigma_{ep} S(|\vec{p_i}|, E_i)$$

thus:

$$\frac{\sigma_{3\text{He}(e,e'p)}}{\sigma_{3\text{H}(e,e'p)}} \cong \frac{S_{3\text{He}}(|\mathbf{p}_i|,E_i)}{S_{3\text{H}}(|\mathbf{p}_i|,E_i)}$$

Further minimizing FSI: ³He/³H ratio

SRC and np-dominance

³He/³H ratio theory predictions

³He/³H ratio theory predictions

³He/³H ratio theory predictions

Missing momentum

a proxi for the nucleon momentum before the interaction took place

Kinematical settings

Measured ³He/³H ratio

Corrections

$$R_{n(p)}^{\text{meas.}}(p_{miss}) = R_{^{3}\text{He}/^{3}\text{H}}^{corr.yield}(p_{miss}) \times C_{\text{BinMig}} \times C_{\text{Rad}} \times C_{E_{m}\text{Acc}}$$

Final results

Final results

Better agreement with PWIA calculations

Effect of Final-State Interactions

what causes high-p_{miss} ~30% discrepancy

ШiГ

Jefferson Lab

Thank you!

"...Physicists have devoted [...] probably more man-hours [to this question] than have been given to any other scientific question in the history of mankind."

Hans A. Bethe

"What holds the nucleus together", Scientific American 189, 58 (1953).

