MeAsurement of F_2^n/F_2^p , d/u RAtios and A=3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

MARATHON

Hanjie Liu Hall A Collaboration meeting, Jan 30

Columbia University

- Measure the F_2^n/F_2^p at medium and large x
- $\bullet\,$ Measure d/u at medium and large x
- Measure the EMC effect for ${}^{3}H$ and ${}^{3}He$

Why is it important to know distribution functions at high x?

- The distribution functions in the valence region is the key to hadron physics;
- Its accurate parametrization is crucial to high energy physics:
 - Need to completely understand QCD background
 - According to QCD evolution, with increasing center-of-mass energy, the distributions at large \times evolves to small \times

- In theory, the distribution functions are essentially non-perturbative
- Parametrization: the cross section is factorized into the product of short- and long-distance contributions

- pQCD choices
- The theoretical assumptions about the x
 ightarrow 1 behavior

 F_2^n/F_2^p is one of the best methods to determine the d/u ratio.

Quark-parton Model

$$F_2(x) = x \sum_i e_i^2 q_i(x) \tag{1}$$

• Assume isospin symmetry:

$$u^{p}(x) = d^{n}(x) = u(x)$$
 $d^{p}(x) = u^{n}(x) = d(x)$

- Proton structure function: $F_2^p(x) = x[\frac{4}{9}u(x) + \frac{1}{9}d(x) + \frac{1}{9}s(x)]$
- Neutron structure function: $F_2^n(x) = x[\frac{4}{9}d(x) + \frac{1}{9}u(x) + \frac{1}{9}s(x)]$

$$\frac{F_2^n(x)}{F_2^p(x)} = \frac{u(x) + 4d(x) + s(x)}{4u(x) + d(x) + s(x)}$$
(2)

The cross section for inelastic electron-nucleon scattering:

$$\sigma = \frac{4\alpha^2 (E')^2}{Q^4} \cos^2(\frac{\theta}{2}) F_2[\frac{1}{\nu} + \frac{1 + Q^2/\nu^2}{xM(1+R)} \tan^2(\frac{\theta}{2})]$$
(3)

where $R = \sigma_L / \sigma_T$

- Proton structure function is measured up to \sim 0.85 by electron/muon scattering on Hydrogen target
- Since there is no free neutron target, deuteron target is used to extract neutron structure function for decades

Why can't extract F_2^n from deuteron target at high x?

EMC effect

The nuclear structure function is not simply the sum of the nucleon structure functions • Using different nuclear effect model, the F_2^n/F_2^p extracted from F_2^d/F_2^p could be different.

SLAC DIS Data revisited

Bodek *et al.*: Non-relativistic Fermi-smearing-only model with Paris N-N potential

Melnitchouk and Thomas: Relativistic convolution model with empirical binding effects

Whitlow *et al.*: Assumes EMC effect in deuteron (Frankurt and Strikman data-based Density Model)

Why could MARATHON avoid this issue?

MARATHON

Perform inclusive electron deep inelastic scattering (DIS) on $^{3}H,\ ^{3}He,\ D_{2}$

• If $R = \sigma_L / \sigma_T$ is the same for ³H and ³He,

$$\frac{F_2^{^3H}}{F_2^{^3He}} = \frac{\sigma(^3H)}{\sigma(^3He)} \tag{4}$$

• ${}^{3}H$ and ${}^{3}He$ EMC type ratios:

$$R(^{3}He) = \frac{F_{2}^{^{3}He}}{2F_{2}^{^{p}} + F_{2}^{^{n}}} \qquad \qquad R(^{3}H) = \frac{F_{2}^{^{3}H}}{F_{2}^{^{p}} + 2F_{2}^{^{n}}} \qquad (5)$$

define the "super-ratio" of EMC ratios in ${}^{3}H$ and ${}^{3}He$:

$$\mathcal{R} = \frac{R(^{3}He)}{R(^{3}H)} \tag{6}$$

• Free neutron to proton structure functions:

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

 $R = \sigma_L / \sigma_T$

SLAC E140X: Measurement of $R = \sigma_L/\sigma_T$ on H1, D2 and Be in DIS

L. H. Tao et al., Z. Phys. C70, 387 (1996).

Super ratio \mathcal{R}

- ${}^{3}H$ and ${}^{3}He$ are mirror nuclei. The nuclear effects should be similar.
- *R* has been calculated in theory to deviate from 1 up to 2% by taking into account all possible effects

Figure 1: With different wave functions

Figure 2: With different input nucleon structure functions parametrization

Super ratio ${\cal R}$

Figure 3: Include Coulomb interaction

Figure 4: Include off-shell corrections

Recent discussions about off-shell corrections can be seen in arXiv:1811.07668 [nucl-th]

Figure 5: Include six-quark configurations

JLab Hall C data for He3 EMC Effect

MARATHON would have similar error bar as Hall C EMC effect

Experiments

- Run period: 2018 Jan 13 – Mar 5; Mar 24 – Apr 12;
- Beam energy *E*₀ = 10.59*GeV*; beam current *I* = 22.5µ*A*
- Use both HRS to detect electrons
- 11 kinematics data on ³*H*, ³*He*, *D*₂
- Statistic error is supposed to be smaller than 1%

	x	E'(GeV)	θ (deg)
kin0	0.199	3.1	16.80
kin1	0.218	3.1	17.58
kin2	0.258	3.1	19.14
kin3	0.298	3.1	20.58
kin4	0.338	3.1	21.93
kin5	0.378	3.1	23.21
kin7	0.458	3.1	25.59
kin9	0.538	3.1	27.77
kin11	0.618	3.1	29.81
kin13	0.698	3.1	31.73
kin15	0.778	3.1	33.55
kin16	0.818	2.9	36.12

Target

Kinematics

plots from Tong Su

• Data yield:

$$Yield = \frac{N_e}{N_{tar} \times N_{beam}}$$
(7)

• $N_e = N_e^{meas} \times C_e$

 C_{e} includes efficiencies correction, acceptance correction, dead time correction and background subtraction;

•
$$N_{tar} = N_{tar}^0 \times C_{boiling}(I)$$

 $C_{boiling}$ is the boiling effect correction

- radiative correction
- Yield ratio: since the efficiencies and acceptance should have no difference between targets, we only consider dead time, charge-symmetric background, end-cup background, boiling effect and radiative correction

Pass I analysis:

- Detector calibrations \surd
- Beamline component calibrations $\sqrt{}$
- End-cup containmination \surd
- Charge-symmetric background \surd
- Gas target boiling effect √
 S. N. Santiesteban, S. Alsalmi arXiv:1811.12167 [physics.ins-det]
- Radiative correction (ongoing)

Preliminary yield ratios of ${}^{3}H/{}^{3}He$, ${}^{3}H/D_{2}$, ${}^{3}He/D_{2}$ and F_{2}^{n}/F_{2}^{p} are obtained. No significant deviations has been seen.

Start **Pass II analysis**. Will recheck everything and decide systematic errors.

 σ_D/σ_p

plots from Tong Su

F_2^n/F_2^p extracted from σ_D/σ_p

$$\frac{F_2^n}{F_2^p} = \frac{F_2^d}{F_2^p} \frac{1}{R_2} - 1$$

 $R_2 = \frac{F_2^d}{F_2^{p} + F_2^{n}}$ is very colse to unity in the MARATHON d/p range. It's determined from a theoretical model by Kulagin and Petti.¹

¹S. A. Kulagin, R. Petti, Phys. Rev. 82C, 054614 (2010); and private communication, 2018.

Graduate students

Jason Bane (University of Tennessee) Tyler Kutz (Stony Brook University) Mike Nycz (Kent State University)

Tyler Hague (Kent State University)Hanjie Liu(Columbia University)Tong Su(Kent State University)

Postdoc

R. Evan McClellan

Zhihong Ye

Florian Hauenstein

Thank You!