E12-06-114

DEEPLY VIRTUAL COMPTON SCATTERING (DVCS)

Hashír Rashad $< O|\hat{D}|U>$

On behalf of Hall A DVCS Collaboration

01/30/2019

Hall A Winter Collaboration Meeting

Thomas Jefferson National Accelerator Facility

3D Picture of a Proton

- Form Factors
- Local non -**Forward Matrix** Elements
- **Spacial Distribution**

Parton Distributions

- Non local Forward Matrix Elements
- (Longitudinal) Momentum Distributions

Hard Exclusive Scattering

 $< P' | \bar{\psi}_q(y) \mathcal{O} \psi_q(0) | P >$

- **Generalized Parton Distributions** (GPD)
- Non local Non -Forward Matrix **Elements**
- Relates spacial and momentum distributions
- Can shed light on quark orbital angular momentum

DVCS at Hall A

- 3 Generation of Experiments so far
- > 2004 (Gen 1)
 - ► Scaling : (Q² dependence of GPD's/Angular Harmonics)
 - ⋆ χ_b=0.36, Q² = 1.5, 1.9, 2.3 GeV²
 - First measurement of DVCS Cross Section (5 Thesis and 4 peer reviewed papers)
- > 2010 (Gen 2)
 - Rosenbluth like separation of Pure DVCS and Interference using beam energy dependence
 - ▶ *χ*_b=0.36, Q² = 1.5, 1.75, 2.0 GeV²
 - Electron Beam 5.5 and 4.5 GeV
 - ▶ 3 Thesis, 2 publication in PRL, 1 in Nature Communications

E1206-114 : DVCS3

Goal : Scaling Test

~50% of the approved PAC Days

• Fall 2014	: Q1	Magnet	with	full	field -	Old	RFunctions
-------------	------	--------	------	------	---------	-----	------------

• Spring 2016	: Magnet couldn't run	with full field for the er	ntire run period. This	resulted in detuning.
---------------	-----------------------	----------------------------	------------------------	-----------------------

Run Period	Kinematics	χ_b	$Q^2(GeV^2)$
Fall 2014	36_1	0.36	3.20
Fall 2016	36_{-2}	0.36	3.60
Fall 2016	36_3	0.36	4.47
Spring 2016	48_1	0.48	2.7
Spring 2016	48_{-2}	0.48	4.36
Spring 2016	48_3	0.48	5.34
Spring 2016	48_4	0.48	6.90
Fall 2016	60_1	0.60	5.54
No Data	60_{-2}	0.60	6.1
Fall 2016	60_3	0.60	8.4
No Data	60_4	0.60	9.0

- $-48_1: 100\%$ tuned $-48_2: 62\%$ tuned
- 40_2 . 02/0 tulled
- **48**₋**3** : 85% tuned
- **48**_**4** : 74% tuned

• Fall 2016 : Replaced magnets, discovered to be saturating at higher current

- **36**₋**2** : 0.8% saturated
- $-36_3: 6.4\%$ saturated
- 60_1 : 3.0% saturated
- $-60_{-3}: 0.7\%$ saturated

DVCS3 Installation in Hall A

SIEMENS

$H(e, e'\gamma)X$

Counting the numbers:

- Beam Studies
 - Beam Energy Measurement
 - Polarization Measurement
 - BCM Calibration
 - Raster/BPM Calibration

- HRS- Electron Selection
 - Optics Calibration
 - Electron Identification
 - Acceptance Studies
 - Electronic Dead Time
 - ✓ Trigger Efficiency
 - Tracking Correction

 $\mathcal{I} = \frac{\pm e^6}{x_{\rm B} y^3 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi) \Delta^2} \left\{ c_0^{\mathcal{I}} + \sum_{n=1}^3 \left[c_n^{\mathcal{I}} \cos(n\phi) + s_n^{\mathcal{I}} \sin(n\phi) \right] \right\} \,,$

Theory of deeply virtual Compton scattering on the nucleon

A.V. Belitsky^{a,b,c}, D. Müller^{c,d}, A. Kirchner^d

 C_n, S_n Compton Form Factors

From Numbers to cross section

Compton Form Factors

Use a fit method to extract the parameters and reconstruct the cross section by minimizing

$$\chi^2 = \sum_{k=1}^{N_{bin}} \left(\frac{N_k^{exp} - N_k^{sim}}{\sigma_k} \right)^2$$

Extracted cross sections are independent of choice of fit parameter

Simulated events Vs Fitted Events : Frederic Georges

For each setting in (X_B, Q²), define 24 bins in $\phi_{\gamma\gamma}$ and ~5 bins in t (t-t_{min})

Assumption : c_j(k) is constant over the phase-space within bin

$$N_k^{sim} = \mathscr{L}\sum_{j \in CFF_{termsc_j}} c_j(k) \times \int_k K_j(E, Q^2, x_{Bj}, t, \phi_e, \phi \gamma \gamma)$$

Preliminary DVCS Cross Sections - Frederic Georges

Preliminary Helicity Independent cross section for $X_B = 0.60$ and $Q^2 = 8.4$ GeV² in all t bins (also $Q^2=5$)

Frederic Georges

Preliminary Helicity Dependent cross section for $X_B = 0.60$ and $Q^2 = 8.4$ GeV² in all t bins (also $Q^2=5$)

Frederic Georges

Q² Dependence (Scaling) - Twist 2 Im(CFF)

π⁰ Cross Section - Mongi Dlamini

$$\frac{d^{5}\sigma}{dQ^{2}d\chi_{B}dtd\phi_{e}d\phi_{\pi}} = \Gamma \frac{d\sigma^{2}}{dtd\phi}$$
$$\frac{d^{2}\sigma}{dtd\phi_{\pi}} = \frac{d^{2}\sigma_{T}}{dtd\phi_{\pi}} + \epsilon \frac{d^{2}\sigma_{L}}{dtd\phi_{\pi}} + \sqrt{2\epsilon(1+\epsilon)} \frac{d^{2}\sigma_{LT}}{dtd\phi_{\pi}} \cdot \cos(\phi_{\pi})$$
$$+ \epsilon \frac{d^{2}\sigma_{TT}}{dtd\phi_{\pi}} \cdot \cos(2\phi_{\pi}) + h\sqrt{2\epsilon(1-\epsilon)} \frac{d^{2}\sigma_{LT'}}{dtd\phi_{\pi}} \cdot \sin(\phi_{\pi})$$

D. Dreschsel and L. Tiator, J. Phys. G: Nucl. Part. Phys. 18 449 (1992)

Same Electron Selection, But look for 2 photons in the DVCS Calorimeter corresponding to a pion signature

Similar Extraction Method to DVCS

Extracted for $X_B = 0.36$ and $Q^2 = 3.1$ GeV², 3.7 GeV², 4.5 GeV²

Extracted Structure Function $\sigma_T + \epsilon \sigma_L$

S. Goloskokov and P. Kroll, Eur.Phys.Jour.A 47:112 (2011)

GK Dominated by dσ_T - twist 3 transversely GPD

Strong Q² dependence

Mongi Dlamini

Extracted Structure Function σ_{TT}

Mongi Dlamini

0.6

Extracted Structure Function σ_{LT}

Mongi Dlamini

Systematics and Corrections

Preliminary

Uncertainty	Value (%)
CFF parametrization	1.0
Beam Polarization	1.0 (2.2)
Luminosity and Deadtime	1.6
HRS Electron ID *	0.5
HRS Multi Track *	0.5
HRS Acceptance (R-Function) *	1.0
Virtual Radiative Corrections *	2.0
Total (Helicity Independent)	3.0
Total (Helicity Dependent)	3.2 (3.7)

* Estimated from E00-110

Trigger Efficiency	99%
Beam Polarization	86%
Dead Time	2%-3% Correction
Spectrometer Tracking	4%-7% Correction
Calorimeter Multi Cluster	0.5% - 2% Correction

Summary and Future

- Preliminary results on DVCS and π^0 Cross Section 2 Thesis
- 4 PhD students currently finalizing analyses
 - Including Normalization Studies
 - Updated Optics for Fall 2016, DIS Cross section is now within 4% of world data, down from ≤15% variation before.
 - Investigating a couple of leads for Spring 2016 DIS cross-section variation (Trigger labelling, detuned optics)
- Draft publications for summer 2019

Jeopardy 50 PAC Days + New Hall C

See : NPS Update, Charles Hyde, Hall C Collaboration Meeting

Thank You

Calibration updates...

- Updated Optics for Fall 2016 Bishnu Karki lacksquare
 - DIS Cross section is now within 4% of world data, down from $\leq 15\%$ variation before.
 - Investigating a couple of leads for Spring 2016 DIS cross- \bullet section variation (Trigger labelling, detuned optics)
- Dead time correction S. Ali
- Updated R-Function for Spring 2016 data A. Johnson
- Raster Correction update for Fall 2014 H. Rashad \bullet
- Updated Scattering chamber geometry for Geant4 simulation Bill Henry

GPD's in Experiments - DVCS

 $\begin{array}{c} \gamma^*P \to \gamma P \\ eP \to eP\gamma \end{array}$

Factorization

Short Range Non-Perturbative (Parametrized by GPD's)

Long Range

Perturbative

$$\chi_b = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M\nu}$$

 $x-\xi$

p'

 $\xi \sim \frac{\chi_b}{2 - \chi_b}$

 $Q^2 = -q^2 = 2EE'(1 - \cos\theta)$

 $\nu = E - E' = q^2/2M$

GPD's appears via Compton Form Factors (Complex Integrals)

$$\mathcal{F} = \int_{-1}^{+1} dx \, F(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right) \quad (F = H \text{ or } E)$$

$$\tilde{\mathcal{F}} = \int_{-1}^{+1} dx \, \tilde{F}(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} + \frac{1}{\xi + x - i\epsilon} \right) \quad (\tilde{F} = \tilde{H} \text{ or } \tilde{E})$$

Properties of GPD's

Connection to PDF's

 $H^{q}(x,0,0) = q(x)$

 $\tilde{H^q}(x,0,0) = \Delta q(x)$

Connection to Total angular Momentum

$$J_{q} = \frac{1}{2} \int_{-1}^{1} dx x [H^{q}(x, \xi, 0) + E^{q}(x, \xi, 0)]$$
$$J_{q} = \frac{\Delta \Sigma}{2} + L_{q} \longleftarrow \text{Orbital}$$
$$\uparrow$$
Spin

Connection to Form Factors

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$$
$$\int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t) = F_{2}^{q}(t)$$
$$\int_{-1}^{1} dx \tilde{H}^{q}(x,\xi,t) = G_{A}^{q}(t)$$
$$\int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t) = G_{P}^{q}(t)$$

Higher Order and Higher Twist

Higher Order

Gluon GPD's

ScienceDirect

scattering M. Guidal

ributions and deep

Higher Twist

¹ The formal definition of *twist* is *dimension*—*spin*. For instance, a $\bar{\psi}\gamma^{\mu}\psi$ operator, that we will often meet in the following, where ψ is a spinor field and γ the standard Dirac matrix, has twist-2: since a spinor has dimension $\frac{3}{2}$, the operator has *dimension* 3 and, due to the γ^{μ} matrix which carries one Lorentz index μ , it is a spin 1 operator (i.e. *vector*). In a general fashion, *twist* allows to classify the order of terms in a $\frac{1}{Q}$ expansion. In other words, higher twists with respect to the leading twists are suppressed by $\frac{1}{Q}$.

Q2 Dependency...

Frederic Georges

Twist 3 - CFF

