Precision measurement of the electron-proton elastic scattering cross section at High Q² (The GMp experiment, E12-07-108)

> Hall A collaboration meeting 30-31 Janauary 2019

Thir Gautam, Hampton University,

in the behalf of GMp collaboration

- Highlights:
 - → Improved precision over existing data by a factor of 3 for $Q^2 > 6 \text{ GeV}^2$
 - \rightarrow Relatively low ϵ :
 - more sensitive to G_{M}^{p} than previous measurement
 - $\boldsymbol{\epsilon}$ lever arm allow the possible sensitivity to 2y studies
- We further reduced our systematic uncertainties since last collaboration meeting (<2% Fall 2016 LHRS data set)
- First publication being prepared

Outline

- Overview of GMp experiment
- Status and overview of analysis
- Systematic uncertainties
- Cross section and GMp results

Proton magnetic form factor

• Form factors encode electric and magnetic structures of the nucleon

 \rightarrow Form factors characterize the spatial distribution of the electric charge and the magnetization current in the nucleon

 $|\text{Form Factor}|^2 = \frac{\sigma(\text{Structured object})}{\sigma(\text{Point like object})}$

 In the one photon exchange approximation the cross section in *ep* scattering when written in terms of G^p_M and G^p_E takes the following form:

$$e'$$

 $\gamma(v,q)$ P
 e

$$\frac{d\sigma}{d\Omega} = \sigma_{Mott} \frac{\varepsilon \left(G_E^p\right)^2 + \tau \left(G_M^p\right)^2}{\varepsilon \left(1 + \tau\right)}, \quad \sigma_{Mott} = \frac{\alpha^2 \cos^2 \frac{\theta}{2}}{4E^2 \sin^4 \frac{\theta}{2}} \frac{E'}{E} \qquad \qquad \mathcal{J}_{\text{proton}} = e\bar{N}(p') \left[\gamma^{\mu}F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_2(Q^2)\right] N(p)$$
Where,
$$G_E = F_1 - \tau F_2 \qquad G_M = F_1 + F_2$$

$$\tau = \frac{Q^2}{4M^2}, \quad \varepsilon = \left[1 + 2\left(1 + \tau\right)\tan^2\left(\frac{\theta}{2}\right)\right]^{-1}$$

Methods of measurements

Rosenbluth separation method:

Within one-photon-exchange framework

$$\sigma_{R} = \frac{d\sigma}{d\Omega} \frac{\varepsilon(1+\tau)}{\tau\sigma_{Mott}} = \varepsilon (G_{E}^{p})^{2} + \tau (G_{M}^{p})^{2},$$

The slope of $\sigma_R(\varepsilon)$ is directly related to G_E^p and the intercept to G_M^p

• Recoil polarization technique (measurement of the ratio between electric and magnetic FF)

Polarized electron transfers longitudinal polarization to G_{F}^{p} , but transverse polarization to G_{M}^{p}

$$\frac{G_E}{G_M} = -\frac{P_t}{P_l} \frac{E_e + E_{e'}}{2M} \tan\left(\frac{\theta_e}{2}\right)$$

Polarization transfer cannot determine the values of G_E and G_M but can determine the from factor ratio.

 \rightarrow TPE effect can be smaller on PT method

6

Overview of GMp experiment

• Precision measurement of the elastic ep cross-section over a wide range of Q^2 and extraction of proton magnetic form factor

- > To improve the precision of cross section at high Q^2 by a factor of 3
- $^{\scriptscriptstyle >}$ To provide insight into scaling behavior of the form factors at high Q^2

Experimental setup

- → RHRS Q1 was replace by new guad
- → LHRS Q1 was replaced by SOS quad
- \rightarrow VDC with new A/D cards is used for tracking information
- \rightarrow Straw Chamber(SC) is used to resolve uncertainty in tracking efficiency
- → Cherenkov and calorimeter counters are used for particle identification
- \rightarrow S0, S2m are used for trigger and timing analysis

8

GMp analysis status

System Calibration:

- → Beamline component Calibration (done)
- → PID detector calibration (done)
- → Tracking detector(VDC, Straw chamber) calibration (done)
- \rightarrow Timing (s0, s2m) calibration (done)
- → Optics calibration (done for LHRS Fall 16 kinematics)

Data Analysis:

- → Tracking, trigger, PID efficiencies, DAQ live-time (done)
- → Target boiling analysis (done)
- → HRS acceptance studies and detailed aperture checks in the simulation model(done)
- → Extraction of cross section with both data to MC ratio and acceptance correction method (done)

Elastic cross section extraction

$$\frac{d\sigma}{d\Omega} = \frac{N_{evt}}{\Omega Q t_{tar}}$$

Relative impact on cross section:

$$\frac{\partial \sigma}{\sigma} = \sqrt{\left(\frac{\partial E}{E}\right)^2 + \left(\frac{\partial \theta}{\theta}\right)^2 + \left(\frac{\partial N}{N}\right)^2 + \left(\frac{\partial L}{L}\right)^2 + \left(\frac{\partial eff}{eff}\right)^2 + \left(\frac{\partial t_d}{t_d}\right)^2 + \left(\frac{\partial \Omega}{\Omega}\right)^2}$$

- Beam energy, scattering angle (very important)
- Statistical uncertainty: $1/\sqrt{N}$
- Luminosity: temp/pressure, boiling, z-reconstruction
- Impact of PID cuts, reconstruction efficiency, dead time(t_d)
- Acceptance: software collimator method
- Optics: lack of data (Spring 16) + Q1 saturation (Fall 16)

Beam charge calibration and boiling study

Charge calibration:

- Multiple instruments of charge measurement: Unser and two BCMs
- Calibration coefficients from multiple measurement have negligible drift within uncertainties

Uncertainty:

Pt-pt: 0.06 μA Correlated: 0.06 μA

Boiling study:

- Target used: 15 cm LH2 target in Loop2 and single foil carbon target
- Carbon target is used to separate possible rate systematic from boiling
 - \rightarrow Raster size: 2×2 mm²
 - → Range of beam current: 3 67 μ A

Uncertainty:

$$\frac{\delta L}{L}: \ 0.0015 - 0.33\% \qquad \qquad \frac{\delta L}{L} = 0.5\% \times \frac{J(\mu A)}{100(\mu A)}$$

Detector efficiencies

- \rightarrow We did particle identification studies using Cherenkov and calorimeter
- $\rightarrow\,$ Got PID efficiencies for all kinematics and the cuts were set to select

12

Optics Calibration (LHRS)

Angle and vertex calibration: used deep inelastic electrons from multi-foil carbon target

A 9-foil carbon target covers a total length of 20 cm along the beam direction

Sieve slit

directions

Spectrometer entrance

Algorithm: Minimization of χ^2 by varying the optics coefficients

$$\chi^2(y_{tg}) = \sum_{\text{events}} (Y_{ijkl} x_{fp}^i \theta_{fp}^j y_{fp}^k \phi_{fp}^l - y_{tg}^{\text{survey}})^2$$

Momentum calibration: used elastic electrons from liquid hydrogen target

Longwu Ou (MIT)

Beam

Check of optics across angular acceptance utilizing elastic peak (LHRS Fall 16)

 \rightarrow This plot shows invariant mass peak is stable and optics is good

Data: (W_{peak} - 938[MeV])

→ W reconstructs to better than 0.4 MeV across most of angular acceptance => $\delta p/p$ deviation < 2x10⁻⁴, $\delta \theta$ deviation < 0.2 mrad

Elastic cross section (Monte carlo ratio method)

$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \int dE' \frac{N^{data}(E',\theta) - N_{BG}(E',\theta)}{\mathcal{L}^{data}.\epsilon.LT} \cdot \frac{RC^{data}}{A^{data}(E',\theta)} \longrightarrow (1)$$

- → Monte Carlo is a COSY transport model use to transport events through the magnetic fields
- → Scattering events are generated at the target and weighted by the physics cross section model (Included radiative effects, energy loss and multiple scattering)
- \rightarrow Compare MC yield to data yield for same normalized luminosity

$$\frac{d\sigma}{d\Omega}^{mod}(\theta) = \int dE' \frac{N^{MC}(E',\theta)}{\mathcal{L}^{MC}} \cdot \frac{RC^{MC}}{A^{MC}(E',\theta)} \longrightarrow (2)$$

$$\frac{d\sigma}{d\Omega}^{data}(\theta) / \frac{d\sigma}{d\Omega}^{mod}(\theta) = \frac{\int^{E_{max}} (N^{data}(E',\theta) - N_{BG}(E',\theta)) dE'}{\int^{E_{max}} N^{MC} dE'} \cdot \frac{A^{MC}(E',\theta)}{A^{data}(E',\theta)} \cdot \frac{RC^{data}}{RC^{MC}} \longrightarrow (3)$$

Assuming acceptance and radiative contributions are correctly modeled:

$$\frac{d\sigma}{d\Omega}^{data}(\theta) = \frac{d\sigma}{d\Omega}^{mod}(\theta) \cdot \frac{Y^{data}}{Y^{MC}} \longrightarrow (4)$$

Example of cross section extraction for 3 pass $Q^2 = 7GeV^2$ kinematics

Thir Gautam (HU) Longwu Ou (MIT)

Check of acceptance using low Q² kinematics (Validation kinematics)

- → Cross-section for $Q^2 = 1.5 \text{ GeV}^2$ is well known to better than 2%
- → Checked the spectrometer model across the acceptance by shifting various apertures and increasing field of magnets

Check of acceptance using low Q² kinematics before tuning spectrometer model (Validation kinematics)

Outstanding issue: discrepancy in target variables

Check of acceptance using low Q² kinematics (Validation kinematics)

 \rightarrow Resolved by increasing field of Quad Q2 by 0.9% in the model

19

What we learn from the study of validation kinematics?

- → We learn that we need to make some adjustment in Q2 field to match the acceptance of MC to data for validation kinematics
- \rightarrow Extracted cross section closer to the well known cross section
- \rightarrow We have found very little impact on high Q² data

Largest problem encountered due to uncorrected saturation in setting replacement Q1 magnet for E' > 3 GeV

Largest problem encountered due to uncorrected saturation in setting replacement Q1 magnet for E' > 3 GeV

 \rightarrow We tuned Q1 field integral to minimize W peak width to get new optics

Cross section calculation by acceptance correction method

The cross section in each theta bin is given by

$$\frac{d\sigma}{d\Omega}(\theta) = \frac{RC(W_{max}^2)}{L} \int_{0}^{W_{max}^2} dE' \frac{N(E',\theta) - BG(E',\theta)}{Eff \cdot \Delta\Omega(E',\theta)}$$

 $\mathsf{RC} \rightarrow \mathsf{Radiative\ correction}$ $\mathsf{W}_{\max} \rightarrow \mathsf{Invariant\ mass\ at\ cut-off\ in\ E'}$ $\mathsf{Eff} \rightarrow \mathsf{Tracking\ efficiency}$ $\mathsf{BG} \rightarrow \mathsf{Background\ processes}$ $L \rightarrow \mathsf{Integrated\ luminosity}$

 \rightarrow Radiative correction include re-scaling of α due to the hard vertex correction and Bremstrahlung

Determination of effective solid angle

- \rightarrow Used uniform generator to generate events uniformly at the target
- \rightarrow Calculated effective solid angle in 2-D δ and θ bins

Cross section calculation by acceptance correction method

Tabular comparison of extracted cross section from two method

Kinematics			Cross section	Cross section	% difference
	Sp. central angle(θ₀)	Sp. central Momentum(P₀) (GeV)	(Data to SIMC ratio method)	(Acc. Correction method)	(Ratio - Acc)/Ratio*100
			(µbarn/sr)	(µbarn/sr)	
K1-1	42.0	1.366	1.440E-03	1.430E-03	0.6
K3-4	24.2	3.962	7.693E-05	7.618E-05	0.9
k3-6	30.9	3.224	1.101E-06	1.082E-06	1.7
K3-7	37.0	2.672	2.882E-06	2.866E-06	0.5
K3-8	44.5	2.145	8.143E-07	8.130E-07	0.2
K4-9	30.9	3.685	1.277E-06	1.275E-06	0.2
K4-10	34.4	3.259	5.835E-07	5.830E-07	0.1
K4-11	42.0	2.531	1.532E-07	1.570E-07	-2.4

 \rightarrow For six out of eight points we got an average cross section better than $\frac{1}{2}$ of percent

 \rightarrow We are investigating why those two points have more than 1% difference in average

Status of Error Budget (LHRS 2016)

Summary of major point-to-point and normalization uncertainties in the cross section for Fall 2016 run

Source	Δσ/σ (%) (pt-pt)	Δσ/σ (%) (Norm.)
Beam charge	0.6(at 10uA) – 0.15(at 40uA)	0.1 (0.03 corr)
Scattering angle	0.5	0.5
Beam energy	0.5	0.5
Boiling	<0.1(at 10 uA) – 0.24(at 40 uA)	0.25 (at 40 uA)
Optics	0.3	0.3
Track Reco	0.2	0.2
PID	0.1	0.1
Trigger	0.2	0.1
Spectrometer acceptance	0.7	0.8
Radiative correction	0.8	1.0
Background subtraction	0.1	< 0.1
Total	1.25 -1.6%	1.5%

GMp - E012-07-108 results

• Cross-section results presented below with ~1.25-1.6 %(pt-pt), 1.5%(norm)

 $\ensuremath{\mathtt{1}\!\!\!\!\!\gamma}$ refers to single photon approximation and Dipole corresponds to both form factor

GMp - E012-07-108 results

• Magnetic form factor results presented below with ~1.25-1.6 %(pt-pt), 1.5%(norm)

JLab E012-07-108, e-p elastic form factor

Summary

- 12 GeV era GMp experiment data taking is completed successfully.
- Data analysis is approaching proposed uncertainty goals.
- Current systematic uncertainties for January 2019 data of:

1.25 - 1.6% pt-pt

1.5% normalization

• Final cross section results with further reduced systematic and first publication in 2 months.

GMp collaboration

- Hall A collaboration, physics staff, technical staff, accelerator team and shift takers
- Spokesperson: J. Arrington, E. Christy, S. Gilad, B. Moffit("retired"), V. Sulkosky, B. Wojtsekhowski (contact)
- Postdoc: K. Allada (MIT)
- Graduate students: Y. Wang (W&M), B. Schmookler (MIT), L. Ou (MIT), T. Gautam (Hampton U.), B. Aljawrneh (NCA&T Uni.)

This work is supported by National Science foundation grant PHY-1508272

Thank you very much!