Hall C Beamline and Møller Polarimetry

Dave Gaskell
A1n/d2n Collaboration Meeting
December 10, 2018

Outline

- 1. Beamline work
- 2. Møller Polarimeter

Beamline Modifications for Polarized ³He

Coils for polarized ³He will run into end of last girder when rotated to certain configurations

- → End of girder will need to be cut off – TO-DO
- → Requires relocation of MPS BCM DONE

Originally, planned to accomplish both summer, 2018 as part of preparations for E12-16-007

- → Due to short summer down, limited ENG availability, only moved MPS BCM (install radiator)
- → Girder will be cut during summer 2019 SAD

Møller Polarimeter – New layout

Additional large quad required to steer electrons to detectors

→ Even with new quad, some compromise had to be made with respect to polarimeter optics

Møller Polarimeter Tasks

- Plan to use Møller for Fall 2018 run for Hall C SIDIS experiments
- Møller quadrupoles have already been used as part of Hall C beamline optics
- Tasks to get Møller ready
 - Test cooldown, verify cryo system controls; Spring 2018
 Fall 2018; Hall C + Cryo
 - Connect new power supply to upgraded AC distribution in hall; Summer 2018; Hall C + Lab Electricians
 - Check out detectors repair if needed; Summer 2018; Hall
 - Install shielding near beamline and detectors; Summer 2018; Hall C
 - Revive DAQ; Summer 2018; Hall C
- New Møller OSP has been reviewed and approved

From last meeting

Møller Polarimeter Tasks

- Plan to use Møller for Fall 2018 run for Hall C SIDIS experiments
 - This was deferred after we lost ~5 weeks of running this fall
 - Next opportunity to test Møller will be after June Hall C experiments. Not highest energy → 4.6 GeV
- Tasks to get Møller ready
 - Test cooldown, verify cryo system controls; Spring 2018 Fall 2018 January 2019; Hall C + Cryo
 - Connect new power supply to upgraded AC distribution in hall;
 Summer 2018; Hall C + Lab Electricians → Complete
 - Check out detectors repair if needed; Summer 2018; Hall C →
 Complete
 - Install shielding near beamline and detectors; Summer 2018;
 Hall C → Complete
 - Revive DAQ; Summer 2018; Hall C → Complete
- New Møller OSP has been reviewed and approved

Large Quad – Full Current Test

Large Møller quads refurbished before 12 GeV operation → new coils

JLab Magnet Test group only able to check quad strength up to 800 A in their lab

New Hall C power supply required for ~1600 A operation → Summer 2018 tested magnet and extended field measurements to full field

Measured field not totally consistent with old, 6 GeV era expectation

Refurbished quads capable of fields needed for 11 GeV operation

Møller Shielding

Extra detector shielding added as part of 12 GeV beamline design (Q-Weak saw higher backgrounds) -> part of this extra shielding installed during summer 2018 SAD

New Møller Target Foils and Ladder

During Summer 2018, Dave Meekins designed new target ladder → smaller foil aperture, easier to get thick foils "flat"

 \rightarrow New iron foils installed (4 μ m, 10 μ m, 10 μ m)

Possible New Møller Solenoid

Looking into replacing existing target solenoid with conduction-cooled (cryogen free) magnet → In use in Hall A starting 2014

Assessing whether Hall A-style magnet compatible with space in Hall C beamline

- → May require changes to target ladder, beamline stand, etc., but so far looks relatively straightforward
- → Depending on quote/delivery time, may be available in time for A1n/d2n, but would require additional installation work

Møller Polarimetry – Precision and Strategy

Precision of Møller measurements expected to be < 1%

→ Time dependence of beam polarization also needs to be tracked in between intermittent Møller measurements

Polarization changes mostly come from:

- Changes at source → Spot at photocathode, heat-and-reactivation, quantum efficiency
- 2. Changes in beam energy → change spin precession and spin direction at hall

We can keep track of and correct for these effects

Residuals from fit to

Energy Monitoring in 2018

https://logbooks.jlab.org/entry/3620478

During SIDIS running in Hall C, Mike Tiefenback and Jay Benesch noticed HALLC:p wasn't accurate at low current → BPMs accidentally had autogain switched off

Summary

- Modest amount of work remaining for Hall C beamline
 - Remove radiator, cut girder
 - Install narrow "collimator" pipe, install downstream pipe with Be window
- Møller polarimeter mostly ready
 - DAQ, detectors, target ready
 - Test cooldown still needed
 - Commissioning in June?
 - There may be an option to install new solenoid

EXTRA

Expected Møller Performance at 11 GeV

Monte Carlo studies by Kamilah Walker – Phoebus High School

Source	Uncertainty	dA/A (%)		Average
Beam x position	0.5 mm	0.058	0.103	0.081
Beam y position	0.5 mm	0.000	0.045	0.023
Beam x angle	0.5mradians	-0.039	0.289	0.125
Beam y angle	0.5mradians	0.039	0.116	0.078
Q1 current	2.00%	0.077	0.129	0.103
Q3 (and Q2) current	2.50%	-0.019	0.411	0.196
Q1 position	1 mm	-0.008	-0.008	-0.008
Q3 position	1 mm	0.000	0.000	0.000
Multiple scattering	10.00%	0.064	0.064	0.064
Radiative corrections	10.00%	-0.022	-0.022	-0.022
Levchuk effect	10.00%	0.295	0.295	0.295
Collimator positions	0.5 mm	0.088	0.088	0.088
Solenoid focusing	100.00%	0.013	0.013	0.013
Solenoid position	0.5 mm	-0.006	-0.006	-0.006
Constant sources of unc.				
Target temperature	100.00%	0.14	0.14	0.14
B-field direction	2 deg.	0.14	0.14	0.14
B-field strength	5.00%	0.03	0.03	0.03
Spin polarization in iron		0.25	0.25	0.25
Electronic DT	100.00%	0.04	0.04	0.04
High current extrapolation		0.5	0.5	0.5
Monte Carlo statistics		0.12	0.12	0.12 K
Total		0.69	0.87	0.74

Total systematic error comparable to Q-Weak

Møller Polarimetry - Spin Precession and Beam Energy

At higher energies, we are more sensitive to spin precession

- → If Wien angle set for maximum polarization in Hall C, a 10⁻⁴ change in beam energy results in <0.1% change in polarization
- → If Wien set for 90% of maximum polarization, then 10⁻⁴ energy change results in 1.6% change in polarization

Spin precession calculations from Joe Grames/Yves Roblin

Hall	Pass	Horizontal	LINAC	Final	Horizontal	Modulo	Within	Wien	Net	Fraction of
		Bends		Energy	Precession	360 deg	+/- 90	Angle	Precession	Polarization
		#	MeV	MeV	deg	deg	deg	deg	deg	#
Α	1	68	1050	2218.36	666.09	306.09	-53.91	53.91	0.00	1.0000
			0.25%	2223.36	667.54	307.54	-52.46	52.46	0.00	1.0000
В	5	452	1050	10575.72	19705.81	265.81	85.81	53.91	139.72	-0.7629
			0.25%	10600.32	19751.48	311.48	-48.52	52.46	3.94	0.9976
С	5	460	1050	10573.25	18805.41	85.41	85.41	53.91	139.32	-0.7584
			0.25%	10597.82	18848.98	128.98	-51.02	52.46	1.44	0.9997

At "nominal" 10.6 GeV energy, Hall C receives ~76% of maximum when Wien optimized for Hall A

→ Increasing linac energy 0.25% results in ~100% for all halls

Møller Polarimeter – New optics

Hodo hits - coinc RvL

Hall C Songsheet - Hall

Hall C Songsheet – Green wall to Hall

